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Gravitational Waves
In the weak field
limit, Einstein’s
equations can be
linearized. For
example, one
can find
coordinates xα

such that

gαβ = ηαβ +hαβ

where ηαβ is flat
space-time and
|hαβ | << 1.

The Einstein field equations involving the Riemann and stress-energy tensors
Rαβ and Tαβ ,

Rαβ −
1

2
gαβR = −8πTαβ ,

can also be linearized, if the Lorenz gauge is chosen. One obtains

�

(
hαβ −

1

2
hηαβ

)
≡ �h̄αβ ≡

(
∂2

∂t2
−∇2

)
h̄αβ = −16πTαβ
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Gravitational Waves in Space

In the vacuum, Tαβ = 0, and we obtain the wave equation for waves travelling
at light speed, �h̄αβ = 0. It has the solution

h̄αβ = Aαβe ikµxµ .

�h̄αβ = ηµνkµkν h̄
αβ = kµkµh̄

αβ = 0,

i.e., ~k = (ω/c, k) is a null vector: kµkµ = ω − ck = 0.

The Lorenz gauge requires h̄αβ,β = 0 leading to the four conditions

Aαβkβ = Aαtkt + Aαiki = 0.

Four more conditions arise from the choice of a transverse-tracelless (TT)
gauge in which ηαβA

αβ = 0, which makes Aαβ traceless and Ati = 0. We also
find Att = 0 and Atα = Aαt = 0 from the above equation.

If the wave travels in the z direction, kα = (kt , 0, 0, kz ), and we have

Aαtkt + Aαzkz = Aαzkz = 0

or Aαz = 0. The condition ηαβA
αβ = 0 means that Axx + Ayy = 0. So

Aαβ =


0 0 0 0
0 a b 0
0 b −a 0
0 0 0 0

 .
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Generation of Gravitational Waves

The constants a and b
represent the two
polarisations of
gravitational waves, which
can be separated into tidal
distortions oriented 45◦

with respect to each other
and perpendicular to the
wave’s travel direction.

+ ×

�h̄αβ = 2kTαβ is analogous to the EM Poisson equation �φ = ρ which has
the solution

φ(t, r) =

∫
V

ρ(t − |r − x|/c, x)

4π|r − x| dV .

By analogy

h̄αβ = 2k

∫
V

Tαβ(t − |r − x|/c, x)

4π|r − x| dV ' k

2πr

∫
V

Tαβ(t − |r − x|/c, x)dV .
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In weak gravity, the effect of tides is represented by the equation of geodesic
deviation

ξ̈k ≡ d2ξk/dt2 = −Rk
0j0ξ

j ,

where ξk is the distance between geodesics (i.e., paths of test particle), and
Rk0j0 is the perturbed curvature (i.e., the Riemann tensor in the TT gauge)

Rk0j0 = −1

2

∂2h̄jk

∂t2
.

The energy-momentum conservation law Tαβ
,β = 0 then gives

h̄ij ' −2

r
Q̈ ij , Q ij =

∫
V

ρ

(
x ix j − 1

3
δij r

2

)
dV .

Qij is the quadrupole moment tensor. The stress-energy carried by GWs cannot
be localized, but the average <> over many cycles is:

TGW
µν =

1

32π

〈
∂hij

∂xµ

∂hij

∂xν

〉
.

The power carried in GWs is

LGW =
dEGW

dt
=

∫
TGW

0j n̂jdA =
1

5

〈...
Q ij

...
Q

ij
〉
.

One can similarly find the angular momentum GW loss rate:

dJGW

dt
=

2

5

〈
Q̈ij

...
Q

ij
〉
.
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Gravitational Waves from a Binary Star

Consider two masses M1 and M2 separated by a in a circular orbit in the x − y
plane. Kepler’s Law gives the angular frequency

Ω =
√

G(M1 + M2)/a3, µ = M1M2/(M1 + M2).

The quadrupole moment tensor becomes

Qxx = µa2

(
cos2 Ωt − 1

3

)
=

1

2
µa2

(
1

3
+ cos 2Ωt

)
so that

h̄xx = −h̄yy = −h̄xy ' −4Gµa2Ω2

c4r
cos 2Ωt.

Note that

I The frequency of the waves is double that of the binary: quadrupolar.

I Amplitude depends on inclination and polarization, averages to 1/2.

I The amplitude decreases as 1/r and the power decreases as h2 ∝ 1/r 2:

h =
1

2

4Gµa2Ω2

c4r
= 2

G(M1 + M2)

ac2

Gµ

rc2
= 2

GM1

ac2

GM2

rc2
.

I A source at the galactic center, r = 8 kpc distant, containing two
M1 = M2 = 1.4M� stars separated by 1R�, has h ' 2 · 10−22, equivalent
to a distortion of 0.03 mm in the distance to α Centauri.
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More Binary Relations
More generally, and after much more algebra, one can find relations for
eccentric binaries for which E = −GM1M2/(2a) and J = µΩa2

√
1− e2:

dEGW

dt
= −32G 4

5c5

M2
1M

2
2 (M1 + M2)

a5(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)
,

dJGW

dt
= −32G 7/2

5c5

M2
1M

2
2 (M1 + M2)1/2

a7/2(1− e2)2

(
1 +

7

8
e2

)
,

da

dt
= −64G 3

5c5

M1M2(M1 + M2)

a3(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)
,

de

dt
= −304G 3

15c5

M1M2(M1 + M2)

a4(1− e2)5/2
e

(
1 +

121

304
e2

)
,

dPb

dt
= −192π(GΩ)5/3

5c5

M1M2

(
1 + 73e2/24 + 37e4/96

)
(M1 + M2)1/3(1− e2)7/2

.

da/de is exactly integrable so that

a

a0
=

(
e

e0

)12/19
1− e2

0

1− e2

(
1 + 121e2/304

1 + 121e2
0/304

)870/2299

.

Eccentric orbits circularize long before a merger occurs
unless 1− e0 << 1.
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Merger Times

For circular orbits, one can integrate the ȧ equation to find

τmerge,circ =
5

256

(
a0c

2

G

)3
a0

M1M2(M1 + M2)c

which is 0.146 Gyr for
M1 = M2 = 1M� and a0 = R�.

If e0 > 0, merger times are
shorter. Since e decays more
rapidly than a, the shortening
factor is approximately

1 + (73/24)e2
0 + (37/96)e4

0

(1− e2
0 )7/2

.

Most of the observed double
neutron star binaries will decay in
less than 10 Gyr.
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The Binary Pulsar PSR B1913+16

Discovered by Hulse & Taylor in 1974. Over 40 years of timing gives
incredibly small uncertainties: M1 = 1.4398± 0.0002M�,
M2 = 1.3886± 0.0002M�, a1 sin i/c = 2.341782(3) s, e = 0.6171334(5),
Pb = 0.322997448911(4) d, pulsar spin f = 16.94053778563(15) Hz,
ω̇ = 4.226598(5) d yr−1, Ṗb = −2.423(1)× 10−12, and relativistic factor

γ = G 2/3 e

c2

(
Pb

2π

)1/3
M2(M1 + 2M2)

(M1 + M2)4/3
= 4.2992(8) ms.

Weisberg et al. (2010)
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A Merger in Gravitational Waves
Write the equations in terms of mass and signal frequency f = Ω/π:

h+,× =
2

r

(
πf

c

)2/3(
GM
c2

)5/3

[cos(2πft), sin(2πft)].

ChirpMass : M =
(M1M2)3/5

(M1 + M2)1/5
=

c3

G

(
5πḟ

96

)3/5(
1

πf

)8/5

.

ḟ

f
=

3

2

ḣ

h
=

96

5

(
GM
c3

)5/3

(πf )8/3,

f (t)

f0
=

[
1− 256

5
(πf0)8/3

(
GM
c3

)5/3

t

]−3/8

;

merger occurs at t = 0 and f = f0.

These sources are therefore standard sirens to determine the luminosity
distance independently of M (r ,M, 1/f , ḟ −1/2 all scale as (1 + z)):

r =
5c

48π2

ḟ

hf 3
.
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Merger Properties

Naively, integrating dEGW/da from a large distance until two objects
touch would result in an energy change (G = C = 1)

∆E = − M1M2

2(R1 + R2)
' −µ

4
.

For black holes, Ri = 2Mi . For equal masses M the energy release is
M/8, and the final black hole mass is Mf = (15/8)M.
Just before touching, the orbital angular momentum would be

J = µ
√

(M1 + M2)a =
√

2M1M2 =
√

2M2

This add to the spin angular momentum of the black hole. With no
further GW emission, the final black holes’s Kerr parameter becomes

af

Mf
=

Ji + Jf

M2
f

=
a1iM1 + a2iM2 +

√
2M2

M2
f

=

(
8

15

)2 [
a1i + a2i

M
+
√

2

]
' 0.40

if a1i = a2i = 0. If a1i = a2i = 0.3M, we obtain af = 0.57Mf .
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The Effect of Tides

δΦt = − 117
256

(1+q)4

q2

(
πfGW GM

c3

)5/3
Λ̄

credit: Jocelyn Read

~~
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Tidal Deformability

Tidal deformability λ is the ratio between the induced dipole moment Qij

and the external tidal field Eij , Qij ≡ −λEij .

k2 is the dimensionless Love
number. It is convenient to
work with the dimensionless

Λ =
λc10

G 4m5
≡ 2

3
k2

(
Rc2

Gm

)5

For a binary neutron star, the
relevant quantity is
(q = m2/m1 ≤ 1)

Λ̄ =
16

13

(1 + 12q)λ̄1 + (12 + q)q4λ̄2

(1 + q)5
.
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When We Know What

~q ~~χeff

~Λ̄

Adapted from
Damour, Nagar and Villaiin (2012)

For spins aligned with ~L, spin effects act oppositely to tides.

In a post-Newtonian expansion, spin effects can be

characterized by a single parameter χeff .
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Λ is Highly Correlated With M and R

I Λ = aβ−6

β = GM/Rc2

a = 0.0086± 0.0011
for
M = 1.35± 0.25 M�

I If R1 ' R2 ' R1.4

it follows that
Λ2 ' q−6Λ1.

Zhao & Lattimer (2018)
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Binary Deformability and the Radius

Λ̃=
16

13

(1 + 12q)Λ1 +q4(12 + q)Λ2

(1 + q)5
'16a

13

(
R1.4c

2

GM

)6
q8/5(12−11q+12q2)

(1 + q)26/5

I Λ̃ = a′(R1.4c
2/GM)6

a′ = 0.0035± 0.0006
for
M = 1.2± 0.2 M�

I GW10817:
a′ = 0.00375± 0.00025

I R1.4 =

11.5± 0.3 M
M�

(
Λ̃

800

)1/6

km

I GW10817:

Zhao & Lattimer (2018)

R1.4 = 13.4± 0.1

(
Λ̃

800

)1/6

km
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GW Post-Merger Constraints

M1 = M2

R = 11 km

R = 15 km

T
a

ka
m

i,
R

ez
zo

ll
a

a
n

d
B

a
io

tt
i

(2
0

1
4

)

I Chirp mass M = (M1M2)3/5(M1 + M2)−1/5 and tidal deformability
Λ ∝ k2(R/M)5 measurable during inspiral.

I Frequency peaks are tightly correlated with
√
M/R3.

I Maximum mass from prompt vs. delayed black hole formation.
I In neutron star-black hole mergers, disc mass depends on a/MBH

and on MNSMBH/R
2.
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