Darmstadt Lecture 13 - Gravitational Waves and

Mergers

James Lattimer
Department of Physics \& Astronomy
449 ESS Bldg.
Stony Brook University

July 18, 2019

Darmstadt Lecture 13 - Gravitational Waves and Mergers James.Lattimer@Stonybrook.edu

Gravitational Waves

In the weak field limit, Einstein's equations can be linearized. For example, one can find coordinates x^{α} such that

$$
g_{\alpha \beta}=\eta_{\alpha \beta}+h_{\alpha \beta}
$$

where $\eta_{\alpha \beta}$ is flat space-time and
 $\left|h_{\alpha \beta}\right| \ll 1$.
The Einstein field equations involving the Riemann and stress-energy tensors $R_{\alpha \beta}$ and $T_{\alpha \beta}$,

$$
R_{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} R=-8 \pi T_{\alpha \beta},
$$

can also be linearized, if the Lorenz gauge is chosen. One obtains

$$
\square\left(h_{\alpha \beta}-\frac{1}{2} h \eta_{\alpha \beta}\right) \equiv \square \bar{h}_{\alpha \beta} \equiv\left(\frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \bar{h}_{\alpha \beta}=-16 \pi T_{\alpha \beta}
$$

Gravitational Waves in Space

In the vacuum, $T_{\alpha \beta}=0$, and we obtain the wave equation for waves travelling at light speed, $\square \bar{h}_{\alpha \beta}=0$. It has the solution

$$
\begin{gathered}
\bar{h}^{\alpha \beta}=A^{\alpha \beta} e^{i k_{\mu} x^{\mu}} \\
\square \bar{h}_{\alpha \beta}=\eta^{\mu \nu} k_{\mu} k_{\nu} \bar{h}^{\alpha \beta}=k^{\mu} k_{\mu} \bar{h}^{\alpha \beta}=0
\end{gathered}
$$

i.e., $\vec{k}=(\omega / c, \mathbf{k})$ is a null vector: $k^{\mu} k_{\mu}=\omega-c k=0$.

The Lorenz gauge requires $\bar{h}_{, \beta}^{\alpha \beta}=0$ leading to the four conditions

$$
A^{\alpha \beta} k_{\beta}=A^{\alpha t} k_{t}+A^{\alpha i} k_{i}=0
$$

Four more conditions arise from the choice of a transverse-tracelless (TT) gauge in which $\eta_{\alpha \beta} A^{\alpha \beta}=0$, which makes $A^{\alpha \beta}$ traceless and $A^{t i}=0$. We also find $A^{t t}=0$ and $A^{t \alpha}=A^{\alpha t}=0$ from the above equation.
If the wave travels in the z direction, $k_{\alpha}=\left(k_{t}, 0,0, k_{z}\right)$, and we have

$$
A^{\alpha t} k_{t}+A^{\alpha z} k_{z}=A^{\alpha z} k_{z}=0
$$

or $A^{\alpha z}=0$. The condition $\eta_{\alpha \beta} A^{\alpha \beta}=0$ means that $A^{x x}+A^{y y}=0$. So

$$
A^{\alpha \beta}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & a & b & 0 \\
0 & b & -a & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Generation of Gravitational Waves

The constants a and b represent the two polarisations of gravitational waves, which can be separated into tidal distortions oriented 45° with respect to each other and perpendicular to the wave's travel direction.

$\square \bar{h}^{\alpha \beta}=2 k T^{\alpha \beta}$ is analogous to the EM Poisson equation $\square \phi=\rho$ which has the solution

By analogy

$$
\phi(t, \mathbf{r})=\int_{V} \frac{\rho(t-|\mathbf{r}-\mathbf{x}| / c, \mathbf{x})}{4 \pi|\mathbf{r}-\mathbf{x}|} d V
$$

$$
\bar{h}^{\alpha \beta}=2 k \int_{V} \frac{T^{\alpha \beta}(t-|\mathbf{r}-\mathbf{x}| / c, \mathbf{x})}{4 \pi|\mathbf{r}-\mathbf{x}|} d V \simeq \frac{k}{2 \pi r} \int_{V} T^{\alpha \beta}(t-|\mathbf{r}-\mathbf{x}| / c, \mathbf{x}) d V
$$

In weak gravity, the effect of tides is represented by the equation of geodesic deviation

$$
\ddot{\xi}^{k} \equiv d^{2} \xi^{k} / d t^{2}=-R_{0 j 0}^{k} \xi^{j},
$$

where ξ^{k} is the distance between geodesics (i.e., paths of test particle), and $R_{k 0 j 0}$ is the perturbed curvature (i.e., the Riemann tensor in the TT gauge)

$$
R_{k 0 j 0}=-\frac{1}{2} \frac{\partial^{2} \bar{h}_{j k}}{\partial t^{2}}
$$

The energy-momentum conservation law $T^{\alpha \beta}{ }_{, \beta}=0$ then gives

$$
\bar{h}^{i j} \simeq-\frac{2}{r} \ddot{Q}^{i j}, \quad Q^{i j}=\int_{V} \rho\left(x^{i} x^{j}-\frac{1}{3} \delta_{i j} r^{2}\right) d V
$$

$Q_{i j}$ is the quadrupole moment tensor. The stress-energy carried by GWs cannot be localized, but the average $<>$ over many cycles is:

$$
T_{\mu \nu}^{\mathrm{GW}}=\frac{1}{32 \pi}\left\langle\frac{\partial h_{i j}}{\partial x_{\mu}} \frac{\partial h^{i j}}{\partial x_{\nu}}\right\rangle
$$

The power carried in GWs is

$$
L_{\mathrm{GW}}=\frac{d E_{\mathrm{GW}}}{d t}=\int T_{0 j}^{\mathrm{GW}} \hat{n}^{j} d A=\frac{1}{5}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle
$$

One can similarly find the angular momentum GW loss rate:

$$
\frac{d J_{\mathrm{GW}}}{d t}=\frac{2}{5}\left\langle\ddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle
$$

Gravitational Waves from a Binary Star

Consider two masses M_{1} and M_{2} separated by a in a circular orbit in the $x-y$ plane. Kepler's Law gives the angular frequency

$$
\Omega=\sqrt{G\left(M_{1}+M_{2}\right) / a^{3}}, \quad \mu=M_{1} M_{2} /\left(M_{1}+M_{2}\right)
$$

The quadrupole moment tensor becomes

$$
Q_{x x}=\mu a^{2}\left(\cos ^{2} \Omega t-\frac{1}{3}\right)=\frac{1}{2} \mu a^{2}\left(\frac{1}{3}+\cos 2 \Omega t\right)
$$

so that

Note that

$$
\bar{h}^{\star x}=-\bar{h}^{y y}=-\bar{h}^{x y} \simeq-\frac{4 G \mu a^{2} \Omega^{2}}{c^{4} r} \cos 2 \Omega t
$$

- The frequency of the waves is double that of the binary: quadrupolar.
- Amplitude depends on inclination and polarization, averages to $1 / 2$.
- The amplitude decreases as $1 / r$ and the power decreases as $h^{2} \propto 1 / r^{2}$:

$$
h=\frac{1}{2} \frac{4 G \mu a^{2} \Omega^{2}}{c^{4} r}=2 \frac{G\left(M_{1}+M_{2}\right)}{a c^{2}} \frac{G \mu}{r c^{2}}=2 \frac{G M_{1}}{a c^{2}} \frac{G M_{2}}{r c^{2}}
$$

- A source at the galactic center, $r=8 \mathrm{kpc}$ distant, containing two $M_{1}=M_{2}=1.4 M_{\odot}$ stars separated by $1 R_{\odot}$, has $h \simeq 2 \cdot 10^{-22}$, equivalent to a distortion of 0.03 mm in the distance to α Centauri.

More Binary Relations

More generally, and after much more algebra, one can find relations for eccentric binaries for which $E=-G M_{1} M_{2} /(2 a)$ and $J=\mu \Omega a^{2} \sqrt{1-e^{2}}$:

$$
\begin{aligned}
\frac{d E_{\mathrm{GW}}}{d t} & =-\frac{32 G^{4}}{5 c^{5}} \frac{M_{1}^{2} M_{2}^{2}\left(M_{1}+M_{2}\right)}{a^{5}\left(1-e^{2}\right)^{7 / 2}}\left(1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}\right)_{1.000} \\
\frac{d J_{\mathrm{GW}}}{d t} & =-\frac{32 G^{7 / 2}}{5 c^{5}} \frac{M_{1}^{2} M_{2}^{2}\left(M_{1}+M_{2}\right)^{1 / 2}}{a^{7 / 2}\left(1-e^{2}\right)^{2}}\left(1+\frac{7}{8} e^{2}\right), \\
\frac{d a}{d t} & =-\frac{64 G^{3}}{5 c^{5}} \frac{M_{1} M_{2}\left(M_{1}+M_{2}\right)}{a^{3}\left(1-e^{2}\right)^{7 / 2}}\left(1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}\right)_{0.100} \\
\frac{d e}{d t} & =-\frac{304 G^{3}}{15 c^{5}} \frac{M_{1} M_{2}\left(M_{1}+M_{2}\right)}{a^{4}\left(1-e^{2}\right)^{5 / 2}} e\left(1+\frac{121}{304} e^{2}\right), \circ \\
\frac{d P_{b}}{d t} & =-\frac{192 \pi(G \Omega)^{5 / 3}}{5 c^{5}} \frac{M_{1} M_{2}\left(1+73 e^{2} / 24+37 e^{4} / 96\right)}{\left(M_{1}+M_{2}\right)^{1 / 3}\left(1-e^{2}\right)^{7 / 2} 0.010}
\end{aligned}
$$

$d a / d e$ is exactly integrable so that

$$
\frac{a}{a_{0}}=\left(\frac{e}{e_{0}}\right)^{12 / 19} \frac{1-e_{0}^{2}}{1-e^{2}}\left(\frac{1+121 e^{2} / 304}{1+121 e_{0}^{2} / 304}\right)^{870 / 2299}
$$

0.001

Eccentric orbits circularize long before a merger occurs unless $1-e_{0} \ll 1$.

Merger Times

For circular orbits, one can integrate the à equation to find
$\tau_{\text {merge }, \text { circ }}=\frac{5}{256}\left(\frac{a_{0} c^{2}}{G}\right)^{3} \frac{a_{0}}{M_{1} M_{2}\left(M_{1}+M_{2}\right) c}$
which is 0.146 Gyr for

$$
M_{1}=M_{2}=1 M_{\odot} \text { and } a_{0}=R_{\odot}
$$

If $e_{0}>0$, merger times are shorter. Since e decays more rapidly than a, the shortening factor is approximately

$$
\frac{1+(73 / 24) e_{0}^{2}+(37 / 96) e_{0}^{4}}{\left(1-e_{0}^{2}\right)^{7 / 2}}
$$

Most of the observed double neutron star binaries will decay in less than 10 Gyr.

The Binary Pulsar PSR B1913+16

Discovered by Hulse \& Taylor in 1974. Over 40 years of timing gives incredibly small uncertainties: $M_{1}=1.4398 \pm 0.0002 M_{\odot}$, $M_{2}=1.3886 \pm 0.0002 M_{\odot}, a_{1} \sin i / c=2.341782(3) \mathrm{s}, e=0.6171334(5)$, $P_{b}=0.322997448911(4)$ d, pulsar spin $f=16.94053778563(15) \mathrm{Hz}$, $\dot{\omega}=4.226598(5) \mathrm{d} \mathrm{yr}^{-1}, \dot{P}_{b}=-2.423(1) \times 10^{-12}$, and relativistic factor

A Merger in Gravitational Waves

Write the equations in terms of mass and signal frequency $f=\Omega / \pi$:

$$
h_{+, x}=\frac{2}{r}\left(\frac{\pi f}{c}\right)^{2 / 3}\left(\frac{G \mathcal{M}}{c^{2}}\right)^{5 / 3}[\cos (2 \pi f t), \sin (2 \pi f t)]
$$

ChirpMass : $\mathcal{M}=\frac{\left(M_{1} M_{2}\right)^{3 / 5}}{\left(M_{1}+M_{2}\right)^{1 / 5}}=\frac{c^{3}}{G}\left(\frac{5 \pi \dot{f}}{96}\right)^{3 / 5}\left(\frac{1}{\pi f}\right)^{8 / 5}$.

$$
\begin{aligned}
\dot{\dot{f}} & =\frac{3}{2} \frac{\dot{h}}{h}=\frac{96}{5}\left(\frac{G \mathcal{M}}{c^{3}}\right)^{5 / 3}(\pi f)^{8 / 3}, \\
\frac{f(t)}{f_{0}} & =\left[1-\frac{256}{5}\left(\pi f_{0}\right)^{8 / 3}\left(\frac{G \mathcal{M}}{c^{3}}\right)^{5 / 3} t\right]^{-3 / 8} ;
\end{aligned}
$$

These sources are therefore standard sirens to determine the luminosity distance independently of $\mathcal{M}\left(r, \mathcal{M}, 1 / f_{f} \dot{f}^{-1 / 2}\right.$ all scale as $\left.(1+z)\right)$:

$$
r=\frac{5 c}{48 \pi^{2}} \frac{f}{h f^{3}}
$$

Merger Properties

Naively, integrating $d E_{\mathrm{GW}} /$ da from a large distance until two objects touch would result in an energy change ($G=C=1$)

$$
\Delta E=-\frac{M_{1} M_{2}}{2\left(R_{1}+R_{2}\right)} \simeq-\frac{\mu}{4} .
$$

For black holes, $R_{i}=2 M_{i}$. For equal masses M the energy release is $M / 8$, and the final black hole mass is $M_{f}=(15 / 8) M$. Just before touching, the orbital angular momentum would be

$$
J=\mu \sqrt{\left(M_{1}+M_{2}\right) a}=\sqrt{2} M_{1} M_{2}=\sqrt{2} M^{2}
$$

This add to the spin angular momentum of the black hole. With no further GW emission, the final black holes's Kerr parameter becomes

$$
\frac{a_{f}}{M_{f}}=\frac{J_{i}+J_{f}}{M_{f}^{2}}=\frac{a_{1 i} M_{1}+a_{2 i} M_{2}+\sqrt{2} M^{2}}{M_{f}^{2}}=\left(\frac{8}{15}\right)^{2}\left[\frac{a_{1 i}+a_{2 i}}{M}+\sqrt{2}\right] \simeq 0.40
$$

$$
\text { if } a_{1 i}=a_{2 i}=0 \text {. If } a_{1 i}=a_{2 i}=0.3 M \text {, we obtain } a_{f}=0.57 M_{f} \text {. }
$$

Tidal Deformability

Tidal deformability λ is the ratio between the induced dipole moment $Q_{i j}$ and the external tidal field $E_{i j}$, k_{2} is the dimensionless Love number. It is convenient to work with the dimensionless

$$
\Lambda=\frac{\lambda c^{10}}{G^{4} m^{5}} \equiv \frac{2}{3} k_{2}\left(\frac{R c^{2}}{G m}\right)^{5}
$$

For a binary neutron star, the relevant quantity is $\left(q=m_{2} / m_{1} \leq 1\right)$

$$
\bar{\Lambda}=\frac{16}{13} \frac{(1+12 q) \bar{\lambda}_{1}+(12+q) q^{4} \bar{\lambda}_{2}}{(1+q)^{5}}
$$

When We Know What

In a post-Newtonian expansion, spin effects can be characterized by a single parameter $\chi_{\text {eff }}$.
For spins aligned with \vec{L}, spin effects act oppositely to tides.

Λ is Highly Correlated With M and R

- $\Lambda=a \beta^{-6}$
$\beta=G M / R c^{2}$
$a=0.0086 \pm 0.0011$ for
$M=1.35 \pm 0.25 M_{\odot}$
- If $R_{1} \simeq R_{2} \simeq R_{1.4}$ it follows that $\Lambda_{2} \simeq q^{-6} \Lambda_{1}$.

Binary Deformability and the Radius

$\tilde{\Lambda}=\frac{16}{13} \frac{(1+12 q) \Lambda_{1}+q^{4}(12+q) \Lambda_{2}}{(1+q)^{5}} \simeq \frac{16 a}{13}\left(\frac{R_{1.4} c^{2}}{G \mathcal{M}}\right)^{6} \frac{q^{8 / 5}\left(12-11 q+12 q^{2}\right)}{(1+q)^{26 / 5}}$

- $\tilde{\Lambda}=a^{\prime}\left(R_{1.4} c^{2} / G \mathcal{M}\right)^{6}$
$a^{\prime}=0.0035 \pm 0.0006$
for

$$
\mathcal{M}=1.2 \pm 0.2 M_{\odot}
$$

- GW10817:

$$
a^{\prime}=0.00375 \pm 0.00025
$$

- $R_{1.4}=$
$11.5 \pm 0.3 \frac{\mathcal{M}}{M_{\odot}}\left(\frac{\tilde{\Lambda}}{800}\right)^{1 / 6} \mathrm{~km}$
- GW10817:

$$
R_{1.4}=13.4 \pm 0.1\left(\frac{\tilde{\Lambda}}{800}\right)^{1 / 6} \mathrm{~km}
$$

Zhao \& Lattimer (2018)

GW Post-Merger Constraints

- Chirp mass $\mathcal{M}=\left(M_{1} M_{2}\right)^{3 / 5}\left(M_{1}+M_{2}\right)^{-1 / 5}$ and tidal deformability $\Lambda \propto k_{2}(R / M)^{5}$ measurable during inspiral.
- Frequency peaks are tightly correlated with $\sqrt{M / R^{3}}$.
- Maximum mass from prompt vs. delayed black hole formation.
- In neutron star-black hole mergers, disc mass depends on $a / M_{B H}$ and on $M_{N S} M_{B H} / R^{2}$.

