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Pulsars: The Early History

1932 Landau suggests the existence of giant nucleus stars.

1932 Chadwick discovers the neutron.

1934 Baade & Zwicky predicts the existence of neutron stars as the end
products of supernovae.

1939 Oppenheimer and Volkoff predict the upper mass limit of neutron star.

1964 Hoyle, Narlikar and Wheeler predict neutron stars rapidly rotate.

1964 Prediction that neutron stars have intense magnetic fields.

1966 Colgate and White incorporate neutrinos into supernova hydrodynamics.

1966 Wheeler predicts the Crab nebula is powered by a rotating neutron star.

1967 Pacini makes the first magnetic pulsar model.

1967 C. Schisler discovers a dozen pulsing radio sources, including one in the
Crab pulsar, using secret military radar in Alaska.

1967 Hewish et al. discover the pulsar PSR 1919+21, Aug 6.

1968 Discovery of a pulsar in the Crab Nebula which was slowing down, ruling
out binary models. Also clinched the connection with core-collapse supernovae.

1968 T. Gold identifies pulsars with rotating magnetized neutron stars.

1968 The term “pulsar” first appears in print, in the Daily Telegraph.

1969 Vela pulsar glitches observed; evidence for superfluidity in neutron stars.

1971 Accretion powered X-ray pulsar discovered by Uhuru (not the Lt.).

1974 Hewish awarded Nobel Prize (but Jocelyn Bell Burnell was not).
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Pulsars: Later Discoveries

1974 Lattimer & Schramm suggest neutron star mergers make the r-process.
1974 First binary pulsar, PSR 1913+16, discovered by Hulse and Taylor.
1979 Taylor et al. observe orbital decay due to gravitational radiation in the
PSR 1913+16 system, leading to their Nobel Prize in 1993.
1979 Chart recording of PSR 1919+21 used as album cover for Unknown
Pleasures by Joy Division (#19/100 greatest British albums ever).
1982 First millisecond pulsar, PSR B1937+21, discovered by Backer et al.
1992 Wolszczan and Frail find first extra-solar planets around PSR B1257+12.
1988 First black widow pulsar, PSR 1957+20, discovered by Fruchter et al.
1992 Duncan & Thompson predict existence of magnetars.
1994 Discovery of PSR J0108-1431 which has the lowest known dispersion
measure and is possibly the closest known pulsar.
1998 Li & Paczynski propose neutron star mergers make kilonovae.
2004 Largest burst of energy in our Galaxy since Kepler’s SN 1604 is observed
from magnetar SGR 1806-20. It was brighter than the full moon in gamma rays
and radiated more energy in 0.1 second than the Sun does in 100,000 years.
2004 Hessels et al. discover the fastest (716 Hz) pulsar, PSR J1748-2446ad.
2005 Burgay et al. discover the first binary with two pulsars, PSR J0737-3039.
2013 Measurement of largest mass, 2.01 M�, for PSR J0348+0432.
2013 Ransom et al. discover a pulsar in a triple system with 2 white dwarfs.
2017 LVC discovers the first binary neutron star merger, GW170817.
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James Lattimer Darmstadt Lecture 1 – History and Global Structure



Stellar Structure in the Newtonian Limit

In the Newtonian limit, the structure equations are

dm

dr
= 4πρr 2,

dp

dr
= −Gmρ

r 2

There are a number of analytic solutions. ρ = ρc =constant yields

m =
4π

3
ρc r

3, p =
GρcM

2R

[
1−

( r

R

)2
]
.

The central pressure is pc = GρcM/(2R) = 3GM/(8πR3).

Another analytic case is p = Kρ2. Now we find

ρ = ρc
sin
√

2πG/Kr√
2πG/Kr

, pc = Kρ2
c , M =

4

π
ρcR

3, R =

√
πK

2G
.

The causality limit, dp/dρ = c2, is reached when GM/R = c2.

Still another case is ρ = ρc [1− (r/R)2], leading to

p =
4π

15
Gρ2

cR
2

[
1− 5

2

( r

R

)2

+ 2
( r

R

)4

− 1

2

( r

R

)6
]

=
2π

15
Gρ2R2

(
1 +

ρ

ρc

)
,

M = 8πρcR
3/15, pc = 4πGρ2

cR
2/15.

This becomes acausal when GM/R = 4c2/5.

James Lattimer Darmstadt Lecture 1 – History and Global Structure



Newtonian Polytropes

In many situations, it can be convenient or a good approximation to
assume p = Kργ where K and γ are constants for the whole star. Such
configurations are called polytropes of index n = 1/(γ − 1).

We can determine the gravitational potential energy, where the
Newtonian potential is φ = −m/r . Noting that in general

dΩ = −Gmdm

r
= −4πGmρrdr = 4πr3p = 3Vdp, Ω = −3

∫
V

pdV ,

we determine Ω for a polytrope:

Ω = −
∫
V

Gmdm

r
= −G

2

∫
V

d(m2)

r
= −GM2

2R
+

G

2

∫
V

m
dp

ρ
=

= −GM2

2R
+

n + 1

2
G

∫
V

md

(
p

ρ

)
= −GM2

2R
− n + 1

2
G

∫
V

p

ρ
dm

= −GM2

2R
− n + 1

2
G

∫
V

pdV = −GM2

2R
+

n + 1

6
Ω

= − 3

5− n

GM2

R
.
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Polytropes in Nature

Non-degenerate, non-relativistic ionized gas (nuclei + electrons)
including radiation pressure, with β = pgas/prad fixed:
Can apply to moderate- to high-mass main-sequence stars, γ = 4/3.

T =

[
3N0kB
µβa

(1− β)

]1/3

ρ1/3

p =
N0kB
µ

ρT +
a

3
T 4 =

N0kB
µβ

[
3N0kB
µβa

(1− β)

]1/3

ρ4/3,

Stars in convective equilibrium, for which the entropy is constant,
radiation pressure is negligible, and the gas is non-relativistic.
Can apply to stars forming on the Hayashi track, or to very low-mass
main sequence stars, γ = 5/3.

s =
5

2
− ln

[(
~2

2mkBT

)3/2

ρ
N0kB
µ

]
= constant

p =
N0kB
µ

ρT =
~2ρ

2m

(
N0kB
µ

)5/3

e2s/3−5/3 = Kρ5/3.
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An isothermal, non-degenerate perfect gas with pairs, radiation and
electrostatic interactions negligible. Could be a dense molecular
cloud core prior to its collapse, γ = 1:

p =
N0kB
µ

ρT .

An incompressible fluid.
A zeroth order approximation to a neutron star, γ →∞.

Non-relativistic degenerate fermions.
Can apply to low-density white dwarfs and cores of evolved stars,
γ = 5/3.

Relativistic degenerate fermions.
Can apply to high-density white dwars, γ = 4/3.

Cold matter at planetary core densities.
Degenerate non-relativistic electrons plus nuclear Coulomb lattice
pressure, but electrons are not uniformly distributed due to Coulomb
effects, γ = 10/3.
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Structure of Newtonian Polytropes

Form dimensionless variables ξ = r/A and θ = (ρ/ρc)1/n. Substitute
these relations into the Newtonian hydrostatic equilibrium equations:

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θn,

A =

√
(n + 1)K

4πG
ρ

(1−n)/n
c ,

with boundary conditions θ = 1 and θ′ = dθ/dξ = 0 at ξ = 0. The
surface θ = 0 is at the radius ξ = ξ1. This is the Lane-Emden equation.

n γ θ(ξ) ξ1 −ξ2
1θ
′
1 −ξ1/(3θ′1) [4π(n + 1)θ′21 ]−1

0 ∞ 1− ξ2/6
√

6 2
√

6 1 3/(8π)
1 2 sin(ξ)/ξ π π π2/3 π/8

3/2 5/3 3.654 2.714 5.992 0.7704
2 3/2 4.353 2.411 11.40 1.638
3 4/3 6.897 2.018 54.19 11.05

3.25 17/13 8.011 1.950 88.15 20.36
4 5/4 14.97 1.797 622.3 247.5

5 6/5 (1 + ξ2/3)−1/2 ∞
√

3 ∞ ∞
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Polytrope Solution Details
Radius:

R = Aξ1

Mass:

M = 4πA3ρc(−ξ2
1θ
′
1)

Concentration:
ρc
ρ̄

= − ξ1

3θ′1

Central pressure:

pc =
1

4π(n + 1)θ′21

GM2

R4

Solutions become acausal
when β = −nξ1θ

′
1.

ξ

θ

K =
G

n + 1

[
4π

(
M

−ξ2
1θ
′
1

)n−1(
R

ξ1

)3−n
]1/n

, R ∝ K n/(3−n)M(n−1)/(n−3)
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Einstein’s Equations for the Schwarzschild Interior Solution

Einstein’s equations for this metric are:

8πε =
1

r2
(1− e−2Λ) + e−2Λ 2

r

dΛ

dr
,

8πp = − 1

r2
(1− e−2Λ) + e−2Λ 2

r

dΦ

dr
,

dp

dr
= −(p + ε)

dΦ

dr
.

We use units such that G = c = 1, so that 1M� is equivalent to 1.475
km, and a pressure of 1 MeV fm−3 is equivalent to 1.3229 · 10−6 km−2.

The first can be integrated to give

e−2Λ = 1−2m/r ,
dm

dr
= 4πr2ε, m = 4π

∫ r

0

εr ′2dr ′ =
r

2
ln
(
1− e−2Λ

)
.

The second and third combined give the so-called TOV equation:

−dp

dr

1

ε+ p
=

dΦ

dr
=

m + 4πr3p

r(r − 2m)
, r ≤ R.

At the center r → 0, dp/dr = dε/dr = dΦ/dr = dΛ/dr = 0 and
m = 4πr3εc/3→ 0;
at the surface r → R, p = 0, m = M and Φ = −Λ = 1

2

√
1− 2M/R.
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The Uniform Density Solution in GR

Assume ε = εc . Then the inconsistency

p = n2 dU

dn
= n2 d(ε/n −mb)

dn
= −εc

requires that n = n0 and U = U0. One finds with compactness β ≡ M/R:

m =
4π

3
ε0r

3, eΦ =
3

2

√
1− 2β − 1

2

√
1− 2β(r/R)2,

e−Λ =

√
1− 2β

( r

R

)2

, p = εc

√
1− 2β −

√
1− 2β(r/R)2√

1− 2β(r/R)2 − 3
√

1− 2β
,

The central pressure pc becomes infinite when β ≤ 4/9. This is the limiting
compactness for any spherically symmetric star (Buchdahl’s Theorem).

Causality requires that pc < εc , or β ≤ 3/8 (although c2
s = dp/dε =∞ for this

solution in any case.) We show later that β ≤ 0.354 is the real causal limit.

Assuming U0 = 0, the binding energy is analytic

BE

M
=

3

4β

(
sin−1√2β√

2β
−
√

1− 2β

)
− 1 ' 3β

5
+

9β2

14
+ · · ·

In the case that U0/mb is finite, this expansion becomes

BE

M
'
(

1 +
U0

mb

)−1 [
−U0

mb
+

3β

5
+

9β2

14
+ · · ·

]
.

I ' 0.4MR2
(

1− 0.87β − 0.3β2
)−1
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Buchdahl’s Solution

A more realistic solution, with vanishing density at the surface, was discovered
in 1967 by Buchdahl. It is the only known analytic solution with a specific
equation of state, an extension of an n = 1 polytrope (p ∝ ε2 for ε→ 0):

ε =
√
p∗p − 5p,

where p∗ is a parameter. Define two parametric radial variables

u =
β sinAr ′

Ar ′
, r ′ =

r(1− 2β)

1− β + u

where A2 = 2πp∗(1− 2β)−1. Then it is found that

e2Φ = (1− 2β)
1− β − u

1− β + u
,

e2Λ =
(1− 2β)(1− β + u)

(1− β − u)(1− β + β cosAr ′)2
,

p =
A2u2

8π

1− 2β

(1− β + u)2
=

u

2

ε

1− β − 3u/2
,

ε =
A2u

4π

1− 2β

(1− β − 3u/2)(1− β + u)2
,

nmb =
√
pp∗

(
1− 4

√
p

p∗

)3/2

, c2
s =

dp

dε
=

(
1

2

√
p∗
p
− 5

)−1

.
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For this solution, the radius, central pressure, energy and number densities, and
binding energy and moment of inertia are

R = (1− β)

√
π

2p∗(1− 2β)
,

pc =
p∗
4
β2, εc =

p∗
2
β(1− 5β/2), ncmb =

p∗
2
β(1− 2β)3/2,

BE

M
=

(1− 1.5β)

(1− β)
√

1− 2β
− 1 ≈ β

2
+
β2

2
+

3β3

4
+ · · ·

I

MR2
'
(

2

3
− 4

π2

)(
1− 1.81β + 0.47β2

)−1

The limit pc ≤ εc , required by causality, implies β ≤ 1/3. However, the real
causality condition, cs,c ≤ 1, implies β ≤ 1/6.

The first of these equations is an explicit M − R relation with scaling factor p∗,

M

R
=

√
2p∗R2

π

√
2p∗R2

π
− 1 + 1− 2p∗R

2

π
.

This can also be written as a quartic equation for R(M).

The Newtonian limit, β → 0, has R = (2p∗/π)−1/2. As expected, this is
independent of M. The causal limit has R = (5/4)(3p∗/π)−1/2, which is only
2.06% larger.

James Lattimer Darmstadt Lecture 1 – History and Global Structure



Tolman VII Solution

This is a realistic solution, discovered by Tolman in 1939, in which
ε = εc(1− x) where x = (r/R)2.

e−2Λ = 1− βx(5− 3x) = 1− 2m

r
,

e2Φ = (1− 5β/3) cos2 φ,

p =
1

4πR2

[√
3βe−Λ tanφ− β

2
(5− 3x)

]
,

n =
(ε+ P)

m

cosφ

cosφ1
,

φ =
w(x = 1)− w

2
+ φ1,

φ1 = φ(x = 1) = tan−1

(√
β

3(1− 2β)

)
,

w = ln

[
x − 5

6
+

e−Λ

√
3β

]
.

James Lattimer Darmstadt Lecture 1 – History and Global Structure



Central values of p/ε and the square of the sound speed are(p
ε

)
c

=
2 tanφc

5

√
1

3β
− 1

3
,

c2
s,c = tanφc

(
1

5
tanφc +

√
β

3

)
.

There is no analytic result for the binding energy, but a series expansion is

BE

M
' 11β

21
+

7187β2

18018
+

68371β3

306306
+ · · · .

In order that pc remain finite, this solution is limited to φ(x = 0) < π/2, or
β < 0.3862.

I

MR2
' 2

7

(
1− 1.1β − 0.6β2

)−1

Causality (cs,c < 1) requires β < 0.2698.
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Narai’s Solution

Yet another analytic solution was discovered by Narai in 1950 using the
parametric variable r ′,

r =
e

c

r ′

cos f

√
1− 2β.

The metric functions are expressed in terms of auxiliary functions f and g :

e−Λ =
√

1− 3β

(
r ′

R ′

)2

tan f ,

eΦ =
√

1− 2β
e cos g

c cos f
,

f = cos−1 e +

√
3β

4

[
1−

(
r ′

R ′

)2
]
,

g = cos−1 c +

√
3β

2

[
1−

(
r ′

R ′

)2
]
.

The quantities e and c are

e2 = cos2 f (R ′) =
2 + β + 2

√
1− 2β

4 + β/3

c2 = cos2 g(R ′) =
2e2

2e2 + (1− e2)(7e2 − 3)(5e2 − 3)−1
.
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Thermodynamic variables are

p =
cos f

4πR ′2
c2

e2

√
3β

{
√

2 cos f tan g

[
1−

√
3β

(
r ′

R ′

)2

tan f

]
−

− sin f

[
2− 3

2

√
3β

(
r ′

R ′

)2

tan f

]}
,

ε =

√
3β

4πR ′2
√

1− 2β

c2

e2

[
3 sin f cos f −

√
3β

4

(
r ′

R ′

)2

(3− cos2 f )

]
,

m =
r ′3

R ′2
e

c

tan f

cos f

√
3β(1− 2β)

[
1−

√
3β

4

(
r ′

R ′

)2

tan f

]
.

The pressure-density ratio and sound speed at the center are

pc
ρc

=
1

3

(√
2 cot f (0) tan g(0)− 2

)
,

c2
s,c =

1

3

(
2 tan2 g(0)− tan2 f (0)

)
.

The central pressure and sound speed become infinite when cos g(0) = 0 or
when β = 0.4126, and the causality limit is β = 0.223. This solution behaves
similarly to Tolman VII.
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Neutron Star Structure

Newtonian Gravity:

dp

dr
= −Gmρ

r2
;

dm

dr
= 4πρr2; ρc2 = ε

Newtonian Polytrope:

p = Kργ ; M ∝ K 1/(2−γ)R(4−3γ)/(2−γ)

ρ < ρs : γ ' 4
3 ; ρ > ρs : γ ' 2

-ρ/ρs = 1.0

-2.5

-
4

-maximum mass

p(ε) p = Kρ2

R ∝ K 1/2M0

p = Kρ4/3

M ∝ K 3/2R0
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Mass-Radius Diagram and Theoretical Constraints

GR:

R > 2GM/c2

P <∞ :

R > (9/4)GM/c2

causality:

R >∼ 2.9GM/c2

— normal NS

— SQS

— R∞ = R√
1−2GM/Rc2

PSR J0348+0432

James Lattimer Darmstadt Lecture 1 – History and Global Structure



Questions

Why do radii of stars with masses 1.2M� <∼ M <∼ 1.8M� have such
a small variation (±0.5 km) about a common radius R̂?

Why do different equations of state predict such a wide range of
common radii (9 km<∼ R̂ <∼ 15 km)?

Answers:

In the density range ρs <∼ ρ <∼ 3ρs equations of state that satisfy the
2M� maximum mass constraint generally predict P ∝ ρ2.

The common radius seems to be determined by the pressure of
neutron star matter in the density range ρs <∼ ρ <∼ 2ρs .
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Pressure - Radius Correlation

Newtonian polytrope: p = Kρ1+1/n

⇒ R ∝ K n/(3−n)M(1−n)/(3−n)

Realistic EOS: n ' 1⇒ R ∝ K 1/2M0

GR phenomenological result:

R ∝ K 1/4 ∝ p
1/4
f ρ

−1/2
f

Buchdahl motivation:
2R2p∗(1− 2β) = π(1− β)2 ⇒

d lnR

d ln ρ

∣∣∣
n,M

=
(1− β)(1− 2β)(

√
p∗ − 10

√
p)

2(1− 3β + 3β2)(
√
p∗ + 2

√
p)

' 0.23

Wide range in p at ρs .

⇑

⇓

ρs

Lattimer & Prakash (2001)

Lattimer & Prakash (2001)
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