Darmstadt Lecture 16 – S190426c – A Black Hole-Neutron Star Merger?

James Lattimer

Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University

July 19, 2019

Darmstadt Lecture 16 - S190426c - A Black Hole-Neutron Star Merger?

James.Lattimer@Stonybrook.edu

Information from LVC indicates a marginal case, with 14% chance of being 'terrestrial'.

Assuming it is cosmic, GCN circular 24411 stated: $p_{\rm BHNS} = 0.60$, $p_{\rm gap} = 0.25$, $p_{\rm BNS} = 0.15$, $p_{\rm BBH} < 0.01$, $p_{\rm HasNS} > 0.99$ and $p_{\rm rem} = 0.72$. LVC defines NS if $M \le 3M_{\odot}$, BH if $M \ge 5M_{\odot}$ and gap if either mass satisfies $3M_{\odot} < M < 5M_{\odot}$.

LVC will not release the chirp mass \mathcal{M} (even though it is known precisely), the mass ratio $q = M_1/M_2 > 1$ (known much less precisely), or the spin parameter χ if one component is a BH (also poorly known).

But it is possible to recover M, M_1, M_2 and χ in cases where $p_{\rm BHNS}, p_{\rm gap}, p_{BNS}$ and $p_{\rm rem}$ are nonzero.

Suitable Variables

Probabilities

Assume

James Lattimer Darmstadt Lecture 16 – S190426c – A Black Hole-Neutron Star Merger?

-

Results For Various σ_q Values

LVC uses model of Foucart et al. (2012, 2018) to determine mass M_d remaining outside the remnant more than a few ms after a BHNS merger:

$$M_d/M_{\rm NS}^b \simeq lpha' \eta^{-1/3} (1-2eta) - \hat{R}_{\rm ISCO} eta eta' \eta^{-1} + \gamma'$$

$$eta = rac{GM_{
m NS}}{R_{
m NS}c^2}$$
, $\eta = rac{q}{(1+q)^2}$ and $\hat{R}_{
m ISCO} = rac{R_{
m ISCO}c^2}{GM_{
m BH}}$.

 $\alpha'\simeq$ 0.406, $\beta'\simeq$ 0.139 and $\gamma'=$ 0.255.

For the Kerr metric

$$\chi = \sqrt{\hat{R}_{\rm ISCO}} \left(4/3 - \sqrt{\hat{R}_{\rm ISCO}/3 - 2/9} \right).$$

 $M_d = 0$ implies

$$\hat{\mathcal{R}}_{\rm ISCO} = (\beta'\beta)^{-1} (\alpha'\eta^{2/3}(1-2\beta) + \gamma'\eta).$$

 χ is found from $p_d = \int \int_{M_d \ge 0} \frac{d^2 p}{d\mathcal{M} d\bar{q}} d\mathcal{M} d\bar{q}$.

Spin Contours

Convergence Occurs For Large σ_q

