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Supernova Types
Thermonuclear

Type Ia No H, strong Si II in
spectra; associated with
explosion of C-O degenerate
white dwarf near Chandrase-
khar limit; accretion in close
binary or white dwarf merger.

Gravitational Collapse
Type Ib No H, strong He in spectra; loss of

outer envelope due to stellar wind or binary
companion, collapse of a Wolf-Rayet star;
light curve similar to SNIa

Type Ic No H or He in spectra; loss of outer envelope;
may be progenitor of long-hard gamma ray bursts

Type IIP H in spectra,
9 < M/M� < 20, plateau
light curve due to high
opacity of shock-ionized H

Type IIL H in spectra, but most
of H envelope ejected before
explosion, magnitude
decreases linearly

Time Wikipedia

Cas A

NASA/CXC/Rutgers/J.Warren & J.Hughes et al.

Time Wikipedia

Crab (NASA)

James Lattimer Darmstadt Lecture 5 – Supernova Types



Type Ia

C + O ⇒ Fe + Ni yields about 1 MeV/baryon, equivalent to 6.1× 1017

ergs/g or 1.2× 1051 erg/M� ≡ 1.2 bethe/M�
Kinetic energies are consistent with this magnitude of energy release

Initially rough equipartition of energy between thermal and kinetic, but at
late times it is mostly kinetic

Chandrasekhar-mass is never quite achieved, but increase in density raises
temperature of core, producing convection. At some point, a (subsonic)
deflagration flame front ensues is, powered by C + C, C + O and O + O.

C or O are incompletely consumed; burning to Fe-peak incomplete.

Debatable if the deflagration front transitions into supersonic detonation.

Even incomplete burning of 1.2 M� of C + O releases 1-2 bethes, more
than enough to unbind the star;

Specific binding energy GM/R ' 2.3× 1017 erg/g;

v/c '
√

2E/M ' 0.03.

Nova models are similar, accreting white dwarf in binary, but involve
irregular explosions of accreted H material that cannot disrupt the star.

These are good standard candles since the mass scale is the
Chandrasekhar mass and burning is usually more than 50% complete.
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Type Ia

The quality of the standard candle can be improved since it is
straightforward to demonstrate that both the peak and the temporal
width of the light curve depend on the total explosion energy.

T.R. Choudhury and T. Padmanabhan, A & A 429, 807 (2005)
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Core-Collapse SN (Type II)

I IA massive star has an iron core mass with a maximum size
determined by the Chandrasekhar limit, about 1.4 M�.

I As the silicon shell surrounding the iron core continues to burn, the
iron core mass slowly increases.

I When the core exceeds the Chandrasekhar mass, it has to collapse.
I The collapsing core separates into a sonically cohesive inner core and

a supersonic outer core.
I The collapsing core continues to collapse until nuclear saturation

density is reached and repulsive forces abruptly halt the collapse.
I The abrupt halt creates a pressure shock wave at the inner core’s

outer boundary. The shock slows down or reverses the collapse of
the overlying infalling matter.

I This shock by itself does not seem capable of exploding the star and
ejecting matter into space.

I The inner core plus additional matter falling onto it creates a new
neutron star, called a protoneutron star. A protoneutron star differs
from a neutron star in having many more protons and electrons as
well as being much hotter.

I During collapse, some protons are converted to neutrons. These
beta reactions produce neutrinos.

p + e− → n + νe

James Lattimer Darmstadt Lecture 5 – Supernova Types



James Lattimer Darmstadt Lecture 5 – Supernova Types



Type II

• Observed total photonic energy < 0.1 bethe
• Observed total kinetic energy is about 1 bethe, perhaps less than from a

Type Ia supernova
• Observed peak photonic luminosity is about 0.1 that of a Type Ia
• Total available gravitational energy, if a neutron star is formed, is

(3/5)GM2
ns/Rns ' 250 bethe for Mns = 1.4 M� and Rns = 12 km

• Neutrinos carry off most of this energy
• Peak neutrino luminosity is 10,000 bethes/s; for comparison, optical

luminosity of 100 billion galaxies with 100 billion solar-type stars each is
40,000 bethes/s
• Gravitational collapse timescale τgc ∼ 1/

√
Gρ ' 0.4 ms for ρ = 1014

g/cm3

• Average neutrino energy in core: Eν = 3µν/4 = 3~c(6π2nν)1/3/4 ∼ 250
MeV, nν = ρYνNo ∼ 1037 cm−3

• Neutrino diffusion timescale τν ∼ (R2
ns/cλν) ' 7.5 s

λν ∼ 1/(ρNoσn) ' 10 cm, σn ∼ 1.7× 10−44(Eν/MeV)2 cm2

• Neutrinos become trapped in collapsed remnant
• Average emitted neutrino energy is about 10 MeV, so as neutrinos diffuse

out they leave behind degeneracy energy which heats the star.
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SN 1987a

• SN 1987a produced average fluence of F = 5.4× 1011(MeV/Eν)
neutrinos/cm2

• 5 kton water detector ⇒ N = 3.5× 1033 H atoms

• Predicted number of neutrinos detected is FNσf /6 ' 5f (Eν/MeV),
where f is the detector efficiency and σ = 1.7× 10−44(Eν/MeV)2 cm2 is
the neutrino cross section.
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Stellar Explosions

We make four assumptions to produce a tractable analytic model.

I Assume the pressure is dominated by radiation pressure (no
neutrinos or e−e+ pairs).

I Assume the energy radiated from the surface and direct escape of
gamma rays from radioactivity are small compared to the total
energy.

I Assume the opacity is primarily due to electron scattering, so κ = κo

independent of ρ and T .

I Assume spherical symmetry.

From the first law of thermodynamics dE + PdV = TdS = dQ:

Ė + PV̇ = − ∂L

∂M
+ ε̇

where E = aT 4V and P = aT 4/3 are the radiation energy per gram and
pressure. Dots are time derivatives. V = 1/ρ and ε̇ is the energy input
per gram per second from radioactivity. L is the luminosity and M is the
mass interior to r .
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Setting up the Problem

Introduce a dimensionless Lagrangian radius containing mass M:
x = r(M, t)/R(t) with R the surface. We have

M(x) = 4πR(t)3
∫ x

0

ρ(r , t)x ′2dx ′

is independent of time, so ρ(M) ∝ R(t)−3:

ρ(r , t) ≡ V−1 = ρoη(x) (Ro/R(t))3

with ρo = ρ(0, 0) and Ro = R(0). Hence

V̇ /V = 3Ṙ/R.

If radiation and radioactivity losses are small compared to the total
energy changes, the system would be adiabatic, giving Ṫ/T = −Ṙ/R.
This suggests

T 4(r , t) = ψ(x)φ(t)T 4
o R

4
o/R

4(t)

as a solution with To = T (0, 0). This implies

Ṫ

T
= − Ṙ

R
+

φ̇

4φ
.
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Luminosity and Transport Equations
The stellar structure equation for the luminosity is

L(r , t) = −4πr2

3

ac

κρ

∂T 4

∂r
= −4πx2

3

ac

κρoη
φ(t)T 4

o Ro
dψ

dx
,

with κ the opacity. The First Law of Thermodynamics becomes

−3ε̇ρ2oR
2
o

acT 4
o

(
η

φψ

)
+

3R3
oρo

c

φ̇

φR
=

1

ψx2
d

dx

(
x2

ηκ

dψ

dx

)
.

Initially, we ignore the ε̇ term. Assuming the opacity is primarily due to
electron scattering, κ = κo ' 0.33 cm2 g−1, the First Law is separable.

3ρoκoR
3
o

c

φ̇

φR
= −α =

1

ψx2
d

dx

(
x2

η

dψ

dx

)
.

The time dependence (diffusion timescale τo) is:

φ(t) = exp

[
− αc

3ρoκoR3
o

∫ t

0

R(t)dt

]
= exp

[
− 1

Roτo

∫ t

0

R(t)dt

]
,

τo =
3R2

oρoκo

αc
' 5.3 · 106 M

IMM�

1014 cm

Ro
s.

The explicit time behavior depends upon R(t).
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Spatial Dependence

At origin, ψ(0) = 1 and ψ′(0) = 0; at surface, Eddington condition is(
T

TE

)4

=
ψ

ψE
=

3

4

(
τ +

2

3

)
where τ(r) = −

∫∞
r
κρdr and τ(RE ) = 2/3. Thus

ψ(1) = ψ(τ = 0) = ψE/2, ψ′(1) = −3ψE (κoρR)x=1/4.

η can be a decreasing (centrally condensed sphere) or an increasing
(shell-like) function. Consider η = eAx . If A = 0, η = 1 and the density is
uniform, and the spatial solution is a Lane-Emden polytrope of index 1:

ψ(x) = (
√
αx)−1sin

√
αx .

The boundary condition implies

sin
√
α√

α
= −2

3

1

κoρoR

(
cos
√
α− sinα√

α

)
√
α ' π

(
1− 2

3

1

κoρoR

)
.

Surprisingly, non-zero values of A lead to very similar results.
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Luminosity

When the shock emerges at the stellar surface R(0) = Ro , the energy is
equipartitioned between thermal and kinetic energies:

ET (t) =

∫ R

0

aT (t)44πr 2dr = 4πR3
oaT

4
o

Ro

R(t)
φ(t)IT = ET (0)φ(t)

Ro

R(t)
,

EK (t) =
1

2

∫ R

0

ρv 24πr 2dr = 2πρoR
3
o Ṙ

2IK = EK (0)
Ṙ2

Ṙ2
0

,

IT =

∫ 1

0

ψx2dx , IK =

∫ 1

0

ηx4dx , v = dr/dt = xṘ.

Then if radiation and radioactivity are negligible additions/losses, a constant is

ESN = ET (t) + EK (t) ' 2ET (0) = 2EK (0).

The emergent luminosity and ejected mass are

L(t) = −4π

3

ac

κoρo
RoT

4
o

(
ψ′

η

)
x=1

φ(t) =
4πcIMRoET (0)

3κoMIT

(
ψ′

η

)
x=1

φ(t).

M =

∫ R

0

4πρr 2dr = 4πρoR
3
o IM , IM =

∫ 1

0

ηx2dx , −αIT =

(
ψ′

η

)
x=1

.

L(t) =
2πc

3κo

ESN

M
αIMRoφ(t) =

ESNφ(t)

2τo
.
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Temporal Development

Conservation of energy (ESN constant) gives

Ṙ2 = Ṙ2
o

(
2− φRo

R

)
, Ṙo =

√
ESNIM
MIK

= 109

√
IM
IK

ESN/M

1018 erg g−1
cm s−1.

At t = 0, φ(t)Ro/R(t) ' 1 so R(t) linearly increases:

R(t) ' Ro + Ṙot.

The initial expansion timescale is

τh =
Ro

Ṙo

= 105 Ro

1014 cm

√
IK
IM

1018 erg g−1

ESN/M
s.

Note that φ changes on the timescale τo >> τh. After t ' several τh (1 week),
φ(t)Ro << R(t), so the expansion, while still linear in time, is

√
2 times faster:

R(t) ' Ro +
√

2Ṙot.

Thermal energy has been converted into kinetic energy. We can solve for φ:

φ(t) = exp

[
− 1

Roτo

∫ t

0

R(t)dt

]
= exp

[
− t

τo
− t2√

2τoτh

]
.

The decay is initially exponential but steepens into a Gaussian with decay time

τdecay =

√√
2τoτh ' 1.1 · 106

√
M

M�

(
IK
I 3M

1018 erg g−1

ESN/M

)1/4

s.
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Further Relations

The maximum observed velocities in the ejecta are

vmax '
√

2Ṙo =

√
2
IM
IK

ESN

M
' 1.4 · 109

√
IM
IK

ESN/M

1018 erg g−1
cm s−1.

The luminosity becomes

L = 1.8 · 1044 ESN/M

1018 erg g−1

Ro

1014 cm
IMφ(t) erg s−1.

The effective temperature [L/(4πσBR
2)]1/4 is

Teff = 7.2 · 104

(
ESN/M

1018 erg g−1

1014 cm

Ro

)1/4
√

Ro

R(t)
[IMφ(t)]1/4 K.

The largest time dependence in Teff is due to expansion. The distribution of
density and opacity in the ejecta only weakly changes observables.

Thus, measurements of largest ejecta velocities yields ESN/M. The initial
effective temperature yields the initial radius Ro . The peak luminosity can then
give the distance to the supernova. Measurement of the decay timescale
provides an estimate of the ejected mass.
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Energetics Check

We assumed that radiation losses were small compared to the total
energy, ∫ ∞

0

L(t)dt =
ESN

2τo

∫ ∞
0

φ(t)dt << ESN.

This integral involves

It =

∫ ∞
0

φ(t)dt =

√
π

2
τdecay exp

(
τ 2decay

4τ 2o

)[
1− erf

(
τdecay

2τo

)]
.

We have

τdecay

2τo
' 0.103

√
M�
M

Ro

1014 cm

(
IM IK

1018 erg g−1

ESN/M

)1/4

<< 1,

for both Type Ia and II supernovae. When z << 1,

erf(z) ' 2π−1/2ze−z2

<< 1.

Therefore ∫∞
0

L(t)dt

ESN
=

It
2τo
'
√
π

2

τdecay

2τo
<< 1

which validates the assumption that radiation losses are small.
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Radioactive Heating

Supernova radioactivity is dominated by the decays 56Ni→56Co→56Fe which
have energy release and decay times

ε̇Ni = 4.78 · 1010 erg g−1 s−1, τNi = 7.6 · 105 s,

ε̇Co = 7.97 · 109 erg g−1 s−1, τCo = 9.82 · 106 s.

A simple generic parametrization is

ε̇ = ξ(x)
[
ε̇Nie

−t/τNi + ε̇Co

(
1− e−t/τNi

)
e−t/τCo

]
where ξ(x) is the spatial distribution of the radioactivities. In SN Ia, the
expanding envelope is partially transparent to the Co decay γs and e+s, which
led to an early mistaken identification with the decay time of Cf.

The energy release from Co decay exceeds that from Ni decay when

t

τNi
'
[

ln

(
ε̇Ni

ε̇Co

)
− ln

(
1− e−t/τNi

)](
1− τNi

τCo

)−1

' 2.08,

about 18 days. After 4τNi , Ni decay provides only 1/8 of the total energy
release, and one can use

ε̇ = ξ(x)ε̇Coe
−t/τCo ≡ ε̇oξ(x)f (t).

The net energy release is about 0.12 MeV/b or 2 · 1050 erg M−1
� << ESN/M

and does not therefore alter the envelope’s homologous expansion.
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Incorporating Radioactivity

Note that the combination ξ(x)η(x)/ψ(x) = b is insensitive to x if
radioactivity is centrally concentrated, a good assumption.

The initial mass of radioactive nuclei is

Mr = 4πR3
oρo

∫ 1

0

ξ(x)η(x)x2dx = b
IT
IM

M.

The temporal development equation becomes

φ̇+ φ
R(t)

τoRo
= f (t)

R(t)

Ro

2ε̇oMr

ESN
.

Let

u̇ =
R(t)

Roτo
, u =

t

τo
+

t2

τ 2decay

.

Then

φ(u) = e−u + ε̄re
−u

∫ u

0

euf (u)du

where, for Ni (Co) decay,

ε̄Ni(Co) =
2ε̇Ni(Co)Mrτo

ESN
=

Mr ε̇Ni(Co)

L(0)
' 3.1(0.52)

Mr

M�

1014 cm

Ro

1018 erg g−1

ESN/M
.
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Time Development

The quantity ε̄ measures the importance of radioactivity to the light curve.
Consider early times u << 1. Since τNi << τo and τdecay << τo (especially for
SN Ia), we have

φ ' 1 + (ε̄r − 1)u u << 1.

In the case of SN Ia, Ro ∼ 108 cm. Therefore ε̄ >> 1 so we expect the
bolometric luminosity to initially increase with time. In the case of
core-collapse SN with red giant progenitors and small Mr , ε̄r < 1 and the
luminosity falls from the start.

Over long times, we have

φ ' e−u + ε̄r (f − e−u), u >> 1.

Even if ε̄r << 1 the radioactivity term becomes important, as f is an
exponential decay while e−u is a Gaussian decay.

The function φ has the property that it is a maximum when

φ̇peak = 0, φpeak = fpeak ε̄r ,

The light curve peaks when it has the same value as the radioactivity term.
When ε̄r < 1, the peak is at t = 0.
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Light Curve Behavior

Because τo >> τdecay , one can safely approximate u → (t/τdecay )2 when
t >> τ 2decay/τo =

√
2τh << τNi . On shorter timescales, transient effects from

shock breakout make simple light-curve modelling impossible.

When ε̄r >> 1 (Type Ia SN and blue supergiant Type II SN) the light curve

has a peak. The width of the peak is given by ∆peak =
√
φpeak/φ̈peak . Taking

the derivative of φ̇+ φu̇ = f ε̄r u̇, one finds

φ̈peak = ḟpeak ε̄r u̇peak , ∆peak =

√
φpeak

φ̈peak

=

√
−fpeak

ḟpeak u̇peak

−fpeak

ḟpeak

'
√
τCoτNi , u̇peak =

2tpeak

τ 2decay

, ∆peak =
τdecay√
2tpeak

(τNiτCo)1/4 .

When ε̄r >> 1, the peak is reached when upeak ∼ 1 and tpeak ∼ τdecay .

Thus ∆peak ∝
√
τdecay ∝ E

1/4
SN , assuming ESN/M ∼ constant.

This is, essentially, the Philips relation made famous as the key step in the
calibration of Type Ia SN for cosmological purposes.
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Computed Correlations for Type Ia SN
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The Philips Relation
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