Chiral effective field theory
for nuclear forces

Concepts

Effective field theory, chiral perturbation theory, renormalization,
predictive power, KSW vs Weinberg, power counting...

Methods

S-matrix matching, method of unitary transformation
to derive nuclear forces (and currents), ...

Applications

S-matrix matching, method of unitary transformation
to derive nuclear forces (and currents), ...
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QCD: a beautiful but enormously
complex theory...



QCD methods

— Perturbation theory N (g (high-energy processes; factorization)

— Lattice QCD

— Effective field theories (effective DoF, symmetries)

truly ab initio

systematically improvable

— Functional methods (Bethe-Salpeter, Schwinger-Dyson, Functional renormalization group)

e e iieeiaeeeea...v more Of @ qualitative nature. ..

: often useful but model dependent...

.............................
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Lattice QCD: brutforce numerical method [HAL acp, NPLQCD, PACS, CalLat, ...]

— truly first-principles approach

— finite-volume energies from 2-point correlators

C@t) = (0| O(t + 1)) 0" (8,) | 0) = 2 10 6 | n) |2 et
n=0

= phase shifts using the Lischer method

. . : 3
— Signal-to-Noise ratio: ~ eXpl_A <m3 = EmM> tl Parisi '84

— An alternative method [HAL acpj: potentials from Nambu-Bethe-Salpeter wave functions

(derivative expansion under control? see e.g. 1808.06299)

i effective energy shift
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Lattice QCD: brutforce numerical method [HAL acp, NPLQCD, PACS, CalLat, ...]
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— HAL QCD sees NO bound states for all M, —values

— also Call at 2009.11825] strongly disfavors bound states at M ~ 714 MeV

— Both methods have issues/systematics; situation in NN is highly controversial...

— In any case, highly inefficient degrees of freedom to describe nuclei; unlikely to provide
precise results for heavier nuclei/nuclear interactions in the near/midterm future...



Weinberg’s 3rd law of progress in theoretical physics:

you may use any degrees of freedom you like to describe a physical
system, but if you use the wrong ones, you will be sorry...

in Asymptotic Realms of Physics, MIT Press, Cambridge, 1983

Typical scales in nuclear physics:

— binding momentum of the deuteron: p ~ /myB,; ~ 45 MeV

— binding momentum of heavier nuclei: p ~ 4/2myB,;/A.
E.g., for4He, p ~ 115 MeV

— Fermi-momentum at the saturation density:
pr = (3127%p)1 ~ 270 MeV

(1. Non-relativistic description in the framework of the Schrédinger theory

2

-V
= KZ +@(m,;3)>+V2N+V3N+V4N+... |P) = E|¥)
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_ 2. EFT for nuclear interactions should involve m, N (and possibly A) DoF



Standard Model (QCD) > | HQET, NRQCD, pNRQCD, SCEFT, ...

\Lal symmetry chiral EFT

effective chiral Lagrangian £ (7, N')

\iral Perturbation Theory

— S-matrix (zz, 7N, 72N, ...)
— nuclear forces and currents

nuclear structure and dynamics

n-less EFT, halo-EFT

\4
A
effective Lagrangian & (V)




ecture syllabus

Day 1: General introduction to EFT
EFT philosophy, renormalization, power counting, construction principles...

Day 2: QCD and ChPT

Chiral symmetry, effective Lagrangian, chiral expansion, loops, inclusion of nucleons, ...

Day 3: Pionless EFT

Resummation of the amplitude, fine tuning, renormalization conditions, RG analysis,...

Day 4: Chiral EFT for nuclear forces and currents
Inclusion of pions, derivation of the nuclear potentials from the effective chiral Lagrangian...

Day 5: Applications

Determination of LECs, truncation uncertainty, state of the art, challenges and perspectives...



What'to'expec

At the end of the week you should know:

WHy

— using EFTs in general
— using chiral EFT for low-energy nuclear systems

How

— to derive nuclear forces and currents
— to renormalize the Schrédinger equation (and how not)

WHart
— is the role of chiral symmetry
— can and cannot be predicted in XEFT
— does the XEFT expansion of nuclear forces correspond to
— is the current status and future perspectives of XEFT for nuclear systems



General introduction to EFT

Some lecture notes (free access):

— Antonio Pich, Effective Field Theory, hep-ph/9806303

— Ira Rotstein, TASI lectures on effective field theories, hep-ph/0308266

— David Kaplan, Five lectures on effective field theory, nucl-th/0510023

— Aneesh Manohar, Introduction to Effective Field Theories, arXiv:1804.05863 [hep-ph]
— Matthias Neubert, Renormalization Theory and EFTs, arXiv:1901.06573 [hep-ph]



Effective Theories




Effective Theories

1




Effective Theories

==) |t iS crucial to choose a proper resolution !



\What'is"Tan"etffective'theory

1. Main idea using a classical example observer

The goal: compute electric potential generated
by a localized charge distribution p{7'}

The answer is V(R) x [do ) _Charge
IR — 7| distribution

An effective theory for R > a: The Top-Down approach

1 1 0” 1
|ﬁ_F| B R 873 2' hiti (97“287“”]{_“
1 R a
- 5 + ﬁfrz + 2! R5 (37"27“] r25;) + ...
- ¢ R LRR;
=|V(R) = 7 + R3P 5 5 —Qi; +

with ¢ = /d37‘ p(7), P, = /d3r p(7) 14, Qij = /d?’r p(7) (3rir; — r26;5)

We have just ,integrated out” short-distance physics. For R > a, the only information
needed about p(7 ) is hidden in the moments ¢, P;, O, ..



An effective theory for R > a: The Bottom-Up approach

What if we cannot ,integrate out“ short-distance physics or don’t even now p(7), apart from
the fact that it is localized in the volume ~ a3?

Solution: write down the most general expression for V using the long-distance DoF

—

(i.e., R) compatible with the symmetry principles (rotational invariance)

V(ﬁ) _ Z rotational tensors___| | rotational tensors characterizing
constructed from R the system, independent of R

1 1 v symmetric and traceless (otherwise redundant structures)

- - -
[V] = length-" ~ a (NDA) ~ a® (NDA)

The (2n + 1) components of X; ; are called in the EFT language LECs and can be deter-
mined from experimental data.

= systematically improvable approximation for V(f) at R > a without knowing p(7)!



QuUuantumTrFielc eory
2. Basic QFT terminology

The LSZ formula (only connected contributions) P
0ut<k1---kn|ﬁl---ﬁm>in = <k1kn’5|ﬁ1ﬁm> ’%;7, T e ; e
2 2 1.2 2 s gt A
- Dy — Mpy kj — Mph - - - N
— H ; Z ’L\/E Gn-l—m( kl)"'a kn7p1--'7pm) 'P,\ \1“
i,J — ~ ~— - t3doo
(p|$(0)]0) momentum-space Green’s function & = Sk
(Here and in what follows, use natural units with 2 = ¢ = 1 unless stated otherwise.)
The Green’s functions are defined as:
d4Q1 d4Qz ; n n
Gz, ... = Do Qg ..., q) = (0T 0
l(xlu ,l’l) / (27_(_)4 (27’(’)4 € l<Q17 Ql) < | {?(ml) . Qs(xl)J}l >
Heisenberg-picture
operators
Switching to the interaction picture for field operators, one derives the master formula:
g P P
<Q|T{$I(a;1) ()t e } 1©2) basis for perturbation theory in powers
Gi(zy,...,1) = < of ' : can be cast into a set of rules

(Q|Te [draHl

nt’
Q> (Feynman diagrams)

For those not familiar with QF T see: K. Kumeric, Feynman Diagrams for Beginners, arXiv:1602.04182 [physics.ed-ph]




QUuantum rField*“rneory

Alternatively, Green’s functions can be calculated using the path integral approach (no operators!)

— ID¢ ¢(£U1) ce qﬁ(gjl) @iS[Cb]
N [Dg eisl4

Gl(azl, c. ,le)

It is convenient to introduce external sources J(x) (auxiliary quantities) and define the generating
functional via:

Z[J] _ /DQS 6i5[¢] + i [ drzJ(z)¢(x)

| 1zl
sothat: Gi(zy,...,1) = m(—z) 0J(w1)...0J(x)|,_,

Perturbative expansion for the generating functional:

200 = ¢ [ oL (553m7) o4 f dadlyd (@)Gr(a—y)(y) Zo[0)

N— i
~—

ZylJ ]

To refresh the basic concepts, see e.g. (free access):
— canonical quantization: chapters 4, 5 of M. Dasgupta, An Introduction to Quantum Field Theory

— path integral quantization: chapters 3, 4 of J. Cardy, Introduction to Quantum Field Theory



Treesand’loops

Two types of diagrams. E.g. in the ¢*- theory: o
— tree-level diagrams for Green’s functions O\/O
emerge when (pertirbatively) solving the
EOM in classical field theory
— loop diagrams represent quantum correc- ©
tions; loop expansion = expansion in i tree-level diagram loop diagram

Indeed, retaining the powers of 7 in the expression for the generating functional one has:

h
i

Z[J] = e%sint( 5J(za:)) o~ a5 [ dtedy ) (2)Gr(z—y)J (y) Zo[0]

__GF
— each vertex brings ™! Cﬁ
— each internal line brings 7 (external lines bring no powers of #) °>y ©

= each diagram scales as A=Y (with & V = # of int. lines & vertices) hs
i oJ

Connected diagrams: L =1—(V—1) = acontribution to Z[J] scales as #Z[J] ~ A"
%_I
number of &6-functions for momentum
conservation apart from the overall one



UVidivergences

1 1 A
Loop diagrams are typically UV divergent. E.g., for & = Eaﬂqsaﬂ(/; - Emzqﬁz - Zgb“
l !
1( %y / 1 ! < uadratically divergent
2 (2m)% 12 — m? + ie ) ! J e
l
1 d*l ? 1
—(—i\)? < logarithmicall
>®< 5 (=) /w P e (=R —m? e ogarthmically
What is the origin of UV divergences? .
£
Consider quantum mechanical scattering > ~a @

off some potential V(r), e.g. V(r) = e~ /2®)

At p < 1/a can approximate: V(r) x 83(r) _
potential V(r)

= V(g) =const = C

= the Lippmann-Schwinger eq. becomes divergent: T = V + VGV + VG, VG,V + ...
H_I

Jd3lc m c
Q1 T2+ ie

The basic principles of a QFT (causality, unitarity, relativity & cluster separability) require
local Lagrangian densities...



fegularization; renormalization'anda

How to deal with UV divergences in QFT?
1. Regularize (DimReg, Pauli-Villars, cutoff, lattice, ...)

2. Renormalize: express the (generally infinite) bare parameters in £ (masses, fields,
coupling constants) in terms of finite, physical quantities. Notice: this is ambiguous
= dependence on renormalization conditions/subtraction scales. An inappropriate

choice may spoil convergence of the loop expansion...

3. Remove the regulator to restore the original theory (this is optional for EFTSs)

Ao L4
E%

— rewrite & using renormalized quantities ¢, = \/24) Zm0 : Z, m? and 22/10 =: Z)A:

1 1
Example: the ¢*-theory £ = - quoé’“qbo — —mﬁqbg —

/2—1 /mz(Zm—l) MZ, - 1)

1 1 A 5>\

L = B 00" — §m2¢2 - I¢4 + —52@@8‘% - —5m¢ m
renormalized Lagrangian counter terms (AZL)

Notice: counter terms are not free parameters (and not observable) and determined
from the requirement to cancel the UV divergences: ¢; = héz-(l) + h25§2) + ...



egularization; renormalization‘and‘a

Feynman rules: 9 :

—R— = 2
P?.__ \M?' - { (P 5% - 8“'\)
A} \ -
X v‘ a— ik } . Sl | 8}
renormalized Lagrangian counter terms (AZ)

2-point function to 1 loop: —iX(p?) = ———— = ——Q— g ——

A
Using e.g. cutoff regularization one finds: Z;,,(p*) = aA®+pm’In — +ym®

Dressed propagator: —@— = —— + —(@3— + _fog—{m—+ ..
' 1

7 !

= + non pole terms
p*—m?—=X(p*)  pP—m? ’

d
= 3(p? =0, —2(p?
(P e i (p°)

=0 <«— on-shell renormalization conditions
p2=m?2 (renorm. m = physical mass)

A
= read off: 5(21) =0, 6= —(aA®>+ Bm?In - + ym?)

5)((”) depend on both the regulator and renorm. cond., while renormalized result is unambiguous...



fegularization; renormalization'anda

For ¢*-theory in 4 dimensions, V divergences in n-point functions are cancelled by §,, 5,
and 6, at any loop order, so that the theory is renormalizable. (Perturbative) renormaliza-
bility is generally determined by the mass dimension [1], (A ~ mass'*) of the coupling.

A
Consider e.g. &, = ?dﬁ in 4 dimensions: [S]=0 = [Z]=4 = [¢]=1 = [1]=1

Using NDA, one can show:

[A] > O: super-renormalizable (only few divergent diagrams) = _O_ + _<1>_ 4o

~InA finite

[A] = O: renormalizable (QED, QCD) = — i 4 G +... <«— divergent (~ A?)

— >O< + >@< +... <— divergent (~ In A)
<— convergent

[4] < O: non-renormalizable (starting from some loop order, G, become divergent for all n)

Notice: obviously, only a very limited number of possible interactions in 4 dimensions are renormalizable!



3. First example of an EFT

Consider a QFT for two scalar fields (M > m) interacting with a Yukawa-like coupling:

1 A
~ - qu@“gb - m 202 a PP — SMP — S50
light heavy
4
1\ ',3 Teel, L.e” 3 1 ~. N R
dp — P scattering at LO (i.e., O(A?)): — It u:[;q'
2.7 T Ty 2T T 4 AR
- )2 1 1 1 2 2 2
1A = —iA e i T u e where s = (p1+p2)°, t=(p1—p3)°, u=(p1—pa)

4m? 2+t + u?
2 IVE 4+ ...

. 1
At low energies (s ~t ~u ~ m> ~ E> < M?): iAw —N( M?) <3+ +

But this looks like the tree-level amplitude obtained from the effective Lagrangian:

)\2

1 1
E— 1 o022 4
Log 5 00" @ 2mgb + 8M2¢ 8M4¢ O¢p? + .

A . g
Y
an infinite tower of non-renormalizable
interactions suppressed by powers of M




So far, the LECs in & were determined by matching at tree level. This can be extended
to higher orders in 7 in a systematic way!

1

[y [y
S — 16t — 208)@9)0" + ...

1
Leff - _§lkinau¢au¢ o E

ina: 79 — 0) _ 2
Tree level matching: 1) = -1, 1©=m —S b =—h

kin ) m )

Matching the 2-point function at the 1-loop order:

\ ’ power of 71

/—\ I e .
S S 4 oo @---- = —-- Ot —- - {}----

S— B — —

Il —~
underlying theory effective theory
: T T P m m_ N m
Using MS with u = M, one finds: ;) = PTYE (1 +5M2>, ' =~ \ 1+ 3

Notice: all non-analytic terms (like e.g. In m?/M?) are exactly the same on both sides!

Similar matching can be performed for > 2 point functions...



xample'of'an

What if we were not able to determine &£ by matching (e.g., the underlying theory not
known or non-perturbative)?

= write down all possible terms in & _;(¢) compatible with the symmetries
(what not a ¢°-interaction?) and fix LECs from experimental data

What about predictive power?

— at tree level, 9/(s, ) is determined by a single LEC from I,/(4!) ¢* (up to correcti-
ons ~ E?/M?)

— this interaction also determines the LO contribution to processes with more ¢’s, e.g.:

. .
s~ "
m
LEEES *
.’ . .
m/
4 -
rd -~
A

Q

< SR geff

— obviously, contributions of terms with derivatives (e.g., ,¢*[] ¢?) are suppressed, at
tree level, by powers of M (,irrelevant® interactions). But inside loop diagrams, we in-

tegrate over arbitrarily high momenta! Can one expect irrelevant operators be supp-
ressed beyond tree level?



xample'of'an

Let’s do power counting (NDA):
e L[ | o)
~ Ccons X X ~ ~
o o Qm)* (12 = m?)((I — p)* — m?)

(we count powers of soft scales Q like p ~ m ~ ;)

~~~~~

Similarly: . ~ . ¥ " ~ O(1)
'0 *~.‘.':’¢ . . Seelo- ¢ el ’ s~
T d*l 2 2
On the other hand: - m ~ ~ 0(0°)
e 2m)* (12 — m2)((l = p)*> — m?)

(after renormalization!)

The suppression appears automatically using DR, but it also holds in general (e.g.,
using A) for proper renormalization conditions (all subtraction scales y; ~ Q).

= power counting:  LO (~ QY: V diagrams made out of /,-vertices

NLO ( ~ Q%): V diagrams made out of /;-vertices
and 1 insertion of dim-6 vertex (/,)

The birth of ChPT (and an EFT in general): Steven Weinberg, Phenomenological Lagrangians,
Physica A96 (79) 327 (about 3700 citations...)



vsS'Multipole"Expansion

Effective Field Theory Electric potential
® Most general effective Lagrangian for light DoF compatible Most general expression
with the symmetries of the underlying theory for the electric potential

1 (rotational invariance)

l l
Lop — % 0P — —mPp? — 4—1!¢4 . f(auqs)(aw)af o

2
® The size of (renormalized) LECs governed by the hard scale M. LECs (multipoles) gover-
LECs carry information about short-range dynamics. They can ned by the size a of p(r'),
be calculated from matching or determined from experiment they can be calculated or

determined from exp.

® Separation of scales: [soff] QO ~m < M [hard] [soft] 1/R <« 1/a [hard]
A
v L _hard scale e Energy expansion of the amplitude Mul:[ipole expansion for
(Feynman graphs, power counting, V(R) in powers of a/R
mass gap renormalization) _
Nete T
" T “soft scale _; \::-




e principlestoran’err

Construction of QFTs (~1930 ... 1980)

1) Construct the action respecting some symmetries. E.g., gauge invariance of QED:
Yo W =eOW A ->A=A-0a

2) Retain only renormalizable interactions (D < 4), e..g. in QED:

Wy, (0" +ieADY, WS MFT (F PV,

~ —— —V—

D=4

=5 D=8
3) Quantize, compute the amplitude % = >, " % " >W©W #

4) Fix parameters from data (in QED, only ¢ and fermion masses) and make predictions...

Modern view is based on Weinberg’s Theorem:

,if one writes down the most general possible Lagrangian, including all terms consistent with
the assumed symmetry principles, and then calculates matrix elements with this Lagrangian
to any given order of perturbation theory, the result will simply be the most general possible
S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition, and the
assumed symmetry properties”

S. Weinberg, Physica 96A (1979) 327; see also H. Leutwyler, Annals Phys. (1994) 165




e principles'of'an

Construction of QFTs (~1930 ... 1980)

1) Construct the action respecting some symmetries. E.g., gauge invariance of QED:
Yo W =eOW A ->A=A-0a

3) Quantize, compute the amplitude ;@W = >w' " }» " >W©W #

4) Fix parameters from data (in QED, only ¢ and fermion masses) and make predictions...

Modern view is based on Weinberg’s Theorem:

.if one writes down the most general possible Lagrangian, including all terms consistent with
the assumed symmetry principles, and then calculates matrix elements with this Lagrangian
to any given order of perturbation theory, the result will simply be the most general possible
S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition, and the
assumed symmetry properties”

S. Weinberg, Physica 96A (1979) 327; see also H. Leutwyler, Annals Phys. (1994) 165




summary

This lecture:
— general introduction, literature, syllabus, ...
— the idea of an effective theory using classical multipole expansion as an example

— a quick reminder on QFT (LSZ formula, Feynman diagrams, trees and loops, UV
divergences and their origin, regularization, renormalization, counter terms, ... )

— first example of an EFT (effective Lagrangian, LECs, power counting, ...)

Coming next:

— Chiral Perturbation Theory as an EFT of QCD



