Chiral effective field theory for nuclear forces

Summary day 1

- a key idea of any effective theory: exploit a scale separation to construct a systematically improvable approximation to the underlying theory in a given region of the parameter space (typically, low energies)
- can be applied to both classical and quantum systems
- construction of EFTs: Weinberg's theorem

Day 2: Intro to Chiral Perturbation Theory

Weinberg, Gasser, Leutwyler, Bernard, Kaiser, Meißner, Bjinens, ...

Selected review articles

- Bernard, Kaiser, Meißner, Int. J. Mod. Phys. E4 (1995) 193
- Pich, Rep. Prog. Phys. 58 (1995) 563
- Bernard, Prog. Part. Nucl. Phys. 60 (2007) 82
- Scherer, Prog. Part. Nucl. Phys. 64 (2010) 1

Lecture notes

- Scherer, Adv. Nucl. Phys. 27 (2003) 277
- Gasser, Lect. Notes Phys. 629 (2004) 1

Text book

- Scherer, Schindler, A Primer for Chiral Perturbation Theory, Springer, Lecture Notes in Physics, 2012

Day 2: Intro to Chiral Perturbation Theory

Weinberg, Gasser, Leutwyler, Bernard, Kaiser, Meißner, Bijnens,

1. Effective Lagrangian for pions
2. From effective Lagrangian to S-matrix
3. Inclusion of nucleons
4. Beyond the heavy-baryon approach
5. Summary of day 2

Effective Lagrangian for pions

1. Effective Lagrangian for pions

- QCD and chiral symmetry

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{QCD}}=\underbrace{\bar{q}(i \not D-\mathcal{M}) q}_{\text {SU(2) } \mathrm{L} \times \mathrm{SU}(2)_{\mathrm{R}} \text { invariant }}-\underbrace{4}_{\text {break chiral symmetry }} G_{\mu \nu} G^{\mu \nu} \\
& \underbrace{\bar{q}_{L} \mathcal{M} q_{R}-\bar{q}_{R} \mathcal{M} q_{L}}_{\bar{q}_{L} \not \supset \not q_{L}+\bar{q}_{R} i \not \supset q_{R}}
\end{aligned}
$$

Light quark masses ($\overline{\mathrm{MS},} \mu=2 \mathrm{GeV}$):

$$
\begin{aligned}
m_{u} & =1.8 \ldots 2.8 \mathrm{MeV} \\
m_{d} & =4.3 \ldots 5.2 \mathrm{MeV}
\end{aligned}<\Lambda_{Q C D}
$$

$\longrightarrow \mathcal{L}_{Q O D}$ is approx. $\operatorname{SU}(2)_{L} \times S U(2)_{R}$ invariant
spontaneous breakdown to $\mathrm{SU}(2)_{\mathrm{V}} \subset \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}} \longrightarrow$ Goldston Bosons (pions)

- Chiral perturbation theory
- Ideal world [$m_{u}=m_{d}=0$], zero-energy limit: non-interacting massless GBs (+ strongly interacting massive hadrons)
- Real world [$m_{u}, m_{d} \ll \Lambda_{Q C D}$], low energy: weakly interacting light GBs (+ strongly interacting massive hadrons)
\longrightarrow expand about the ideal world (ChPT)

Efitective Lagrangian for pions

Pions transform linearly under isospin (isotriplet): $\left|\pi_{1}\right\rangle=\frac{\left|\pi^{+}\right\rangle-\left|\pi^{-}\right\rangle}{\sqrt{2}}, \quad\left|\pi_{2}\right\rangle=\frac{\left|\pi^{+}\right\rangle+\left|\pi^{-}\right\rangle}{\sqrt{2} i}, \quad\left|\pi^{3}\right\rangle=\left|\pi^{0}\right\rangle$
Pions have to transform nonlinearly under chiral rotations $\left(S U(2)\left\llcorner\times S U(2)_{\mathrm{R}} \sim S O(4) \longrightarrow\right.\right.$ pion fields as coordinates on a 4-dimentional sphere)

Nonlinear field redefinitions of the kind $\vec{\pi} \rightarrow \vec{\pi}^{\prime}=\vec{\pi} F^{\prime}[\vec{\pi}], F^{[}[0]=1$ do not change physics
\rightarrow all nonlinear realizations of χ symmetry are equivalent \longrightarrow use most convenient one! Haag '58; Coleman, Callan, Wess, Zumino '69

Example of an explicit construction:

Infinitesimal SO(4) rotation of the 4 -vector $\left(\pi_{1}, \pi_{2}, \pi_{3}, \sigma\right)$:

$$
\binom{\pi}{\sigma} \xrightarrow{S O(4)}\binom{\pi^{\prime}}{\sigma^{\prime}}=\left[1_{4 \times 4}+\sum_{i=1}^{3} \theta_{i}^{V} V_{i}+\sum_{i=1}^{3} \theta_{i}^{A} A_{i}\right]\binom{\pi}{\sigma}
$$

where: $\quad \sum_{i=1}^{3} \theta_{i}^{V} V_{i}=\left(\begin{array}{cccc}0 & -\theta_{3}^{V} & \theta_{2}^{V} & 0 \\ \theta_{3}^{V} & 0 & -\theta_{1}^{V} & 0 \\ -\theta_{2}^{V} & \theta_{1}^{V} & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right), \quad \sum_{i=1}^{3} \theta_{i}^{A} A_{i}=\left(\begin{array}{cccc}0 & 0 & 0 & \theta_{1}^{A} \\ 0 & 0 & 0 & \theta_{2}^{A} \\ 0 & 0 & 0 & \theta_{3}^{A} \\ -\theta_{1}^{A} & -\theta_{2}^{A} & -\theta_{3}^{A} & 0\end{array}\right)$
Switch to nonlinear realization: only 3 out of 4 components of the vector $(\boldsymbol{\pi}, \sigma)$ are independent, i.e. $\boldsymbol{\pi}^{2}+\sigma^{2}=F^{2}$

$$
\begin{array}{llll}
\boldsymbol{\pi} & \xrightarrow{\theta^{V}} \quad \boldsymbol{\pi}^{\prime}=\boldsymbol{\pi}+\boldsymbol{\theta}^{V} \times \boldsymbol{\pi}, & \longleftarrow & \text { linear under } \vec{\theta}^{V} \\
\boldsymbol{\pi} & \xrightarrow{\theta^{A}} & \boldsymbol{\pi}^{\prime}=\boldsymbol{\pi}+\boldsymbol{\theta}^{A} \sqrt{F^{2}-\boldsymbol{\pi}^{2}} & \longleftarrow \\
\text { nonlinear under } \vec{\theta}^{A}
\end{array}
$$

Efitective Lagrangian for pions

Can be rewritten in terms of a 2×2 matrix:

$$
U=\frac{1}{F}\left(\sigma \mathbf{1}_{2 \times 2}+i \boldsymbol{\pi} \cdot \boldsymbol{\tau}\right) \xrightarrow{\text { nonlinear realization }} U=\frac{1}{F}\left(\sqrt{F^{2}-\boldsymbol{\pi}^{2}} \mathbf{1}_{2 \times 2}+i \boldsymbol{\pi} \cdot \boldsymbol{\tau}\right)
$$

Chiral rotations: $U \longrightarrow U^{\prime}=L U R^{\dagger} \quad$ with $\quad L=\exp \left[-i\left(\boldsymbol{\theta}^{V}-\boldsymbol{\theta}^{A}\right) \cdot \boldsymbol{\tau} / 2\right], \quad R=\exp \left[-i\left(\boldsymbol{\theta}^{V}+\boldsymbol{\theta}^{A}\right) \cdot \boldsymbol{\tau} / 2\right]$

Derivative expansion for the effective Lagrangian $\mathcal{L}_{\mathrm{vff}}=\mathcal{L}_{\pi}^{(2)}+\mathcal{L}_{\pi}^{(4)}+\ldots$

0 derivatives: $U U^{\dagger}-U^{\dagger} U-1$ - irrelevant \longleftarrow only derivative couplings of GBs
2 derivatives: $\operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right) \stackrel{g \in G}{ } \cdot \operatorname{Tr}\left(L \partial_{\mu} U R^{\dagger} R \partial^{\mu} U^{\dagger} L^{\dagger}\right)=\operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)$

$$
\longrightarrow \mathcal{L}_{\pi}^{(2)}=\frac{F^{2}}{4} \operatorname{Tr}\left(\theta_{\mu} v^{\nu} \theta^{\mu} \partial^{\gamma}\right)
$$

4 derivatives: $\left[\operatorname{Tr}\left(\partial_{\Delta} U^{\mu} U^{\dagger}\right)^{2}, \operatorname{Tr}\left(\partial_{\mu} U^{2} \partial^{\dagger}\right) \operatorname{Tr}\left(\partial^{\mu} U \partial^{\mu} U^{\dagger}\right), \operatorname{Tr}\left(\partial_{\mu} U \theta^{\mu} U^{\dagger} \partial_{\nu} U \partial^{v} U^{\dagger}\right)\right.$
(terms with $\partial_{\mu} \partial_{\nu} U, \partial_{j} \partial_{U} \partial_{\rho} U, \partial_{\mu} \partial_{\nu} \partial_{\rho} \partial_{\tau} U$ can be eliminated via EOM/partial integration)

Chiral symmetry breaking terms

$\delta \mathcal{L}_{\mathrm{QCD}}=-\bar{q}_{L} \mathcal{M} q_{R}-\bar{q}_{R} \mathcal{M}^{\dagger} q_{L}$ can be made χ-invariant by requiring: $\mathcal{M} \rightarrow L \mathcal{M} R^{\dagger}$
\rightarrow construct all possible χ-invariant terms involving \mathcal{M} and freeze out \mathcal{M} at the end
LO term: $\delta \mathcal{L}_{\mathrm{SB}}=\frac{B F^{2}}{2} \operatorname{Tr}\left[\mathcal{M} U^{\dagger}+U \mathcal{M}^{\dagger}\right]=2 B F^{2} m_{q}-B m_{q} \vec{\pi}^{2}+\ldots \rightarrow M_{\star}^{2}=2 m_{q} B+\mathcal{O}\left(m_{q}^{2}\right)$

Effiective Lagrangian for plons

The leading and subleading effective Lagrangians for pions

$$
\begin{aligned}
\mathcal{L}_{\pi}^{(2)} & =\frac{F^{2}}{4}\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}+2 B\left(\mathcal{M} U+\mathcal{M} U^{\dagger}\right)\right\rangle \\
\mathcal{L}_{\pi}^{(4)} & =\frac{l_{1}}{4}\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle^{2}+\frac{l_{2}}{4}\left\langle\partial_{\mu} U \partial_{\nu} U^{\dagger}\right\rangle\left\langle\partial^{\mu} U \partial^{\nu} U^{\dagger}\right\rangle+\frac{l_{3}}{16}\left\langle 2 B \mathcal{M}\left(U+U^{\dagger}\right)\right\rangle^{2}+\ldots \\
& -\frac{l_{7}}{16}\left\langle 2 B \mathcal{M}\left(U-U^{\dagger}\right)\right\rangle^{2} \quad \text { Gasser, Leutwyler '84 }
\end{aligned}
$$

Low-energy constants of $\mathcal{L}_{\pi}^{(2)}$

- F is related to the pion decay constant $F_{\pi}:\langle 0| J_{A_{\mu}}^{i}(0)\left|\pi^{j}(\vec{p})\right\rangle=i p_{\mu} F_{\pi} \delta^{i j}$
axial current from $\mathcal{L}_{\pi}^{(2)}: \quad J_{A_{\mu}}^{i}=i \operatorname{Tr}\left[\tau^{i}\left(U^{\prime} \partial_{\mu} U-U \partial_{\mu} U^{\prime}\right)\right]=-F \partial_{\mu} \pi^{i}+\ldots$
$\longrightarrow F$ is F_{π} in the chiral limit: $F_{\pi}=F+\mathcal{O}\left(m_{q}\right) \simeq 92.4 \mathrm{MeV}$
- B is related to the chiral quark condensate

Tree-level multi-pion connected diagrams from $\mathcal{L}_{\pi}^{(2)}$

$$
U(\boldsymbol{\pi})=\mathbf{1}_{2 \times 2}+i \frac{\boldsymbol{\tau} \cdot \boldsymbol{\pi}}{F}-\frac{\boldsymbol{\pi}^{2}}{2 F^{2}}-i \alpha \frac{\boldsymbol{\pi}^{2} \boldsymbol{\tau} \cdot \boldsymbol{\pi}}{F^{3}}+\mathcal{O}\left(\boldsymbol{\pi}^{4}\right) \rightarrow \mathcal{L}_{\pi}^{(2)}=\frac{Q_{\mu} \pi \cdot \partial^{2} \pi}{2}-\frac{M^{2} \pi^{2}}{2}+\frac{\left(\theta_{2} \pi \cdot \pi\right)^{2}}{2 F^{2}}-\frac{M^{2} \pi^{4}}{\Delta F^{2}}+\ldots
$$

From effiective Lagrangian to S-matrix

2. From effective Lagrangian to S-matrix

Tree-level diagrams with higher-order vertices are suppressed at low energy.
The argument can be generalized to quantum corrections (loops) \longrightarrow ChPT Weinberg '79
Typical example of a loop integral:

$$
\begin{aligned}
I & =\int \frac{d^{4} l}{(2 \pi)^{4} l^{2}-M^{2}+i \epsilon} \stackrel{\text { DR }}{\longrightarrow} \mu^{4-d} \int \frac{d^{d} l}{(2 \pi)^{d}} \frac{i}{l^{2}-M^{2}+i \epsilon} \\
& =\frac{M^{2}}{16 \pi^{2}} \ln \left(\frac{M^{2}}{\mu^{2}}\right)+2 M^{2} L(\mu)+\ldots \text { terms vanishing in } d=4
\end{aligned}
$$

The infinite quantity $L(\mu)=\frac{\mu^{d-4}}{16 \pi^{2}}\left(\frac{1}{d-4}+\right.$ const $)$ can be absorbed into l_{i} 's of $\mathcal{L}_{\pi}^{(4)}: l_{i} \rightarrow l_{i}^{\mathrm{r}}(\mu)$
The bottom line: after renormalization, all momenta flowing through loop graphs are soft, $\sim Q$

Power counting (Naive Dimensional Analysis)

- pion propagators: $1 /\left(y^{2}-M_{\pi}^{2}\right) \sim 1 / Q^{2}$

power of the soft scale Q for a given diagram

From effiective Lagrangian to S-matrix

Examples:

$D=2+2 L+\sum_{d} N_{d}(d-2)$

$D-2+2+0-4$

$D-2+4+0-6$

Scattering amplitude is obtained via an expansion in Q / Λ_{χ}. What is the value of Λ_{χ} ?

- Chiral expansion breaks down for $E \sim M_{\rho} \rightarrow \Lambda_{\chi} \sim M_{\rho}=770 \mathrm{MeV}$
- An upper bound for Λ_{χ} from pion loops: $\Lambda_{\chi} \sim 4 \pi F_{\pi}$ Manohar, Georgi'84

$$
\stackrel{M^{2}}{\mathbf{F}^{2}} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{i}{l^{2}-M^{2}+i \epsilon} \stackrel{D R}{\longrightarrow} M^{2} \frac{M^{2}}{\left(1 \pi F^{2}\right)^{2}}\left[\ln \frac{M^{2}}{\mu^{2}}+2 \mu^{i-4}\left(\frac{1}{d-4}+\text { const }\right)\right]
$$

angular integration in 4 dimensions
dimensional arguments

$$
\int \frac{d^{i} \ell}{(2 \pi)^{d}}=\int \frac{d \Omega_{d}}{(2 \pi)^{d}} \int t^{i-1} d i=\frac{1}{2^{d-1} \pi^{d / 2} \Gamma(d / 2)} \int t^{d-1} d t \xrightarrow{d \rightarrow 4} \frac{2}{(4 \pi)^{2}} \int i^{2} d l
$$

Pion scattiering lengths in ChPT

$Q^{2}:$

Q^{4} :

$Q^{6}:$

Predictive power?

$$
\begin{aligned}
\mathcal{L}_{\mathrm{cff}}= & \mathcal{L}_{\pi}^{(2)}+\mathcal{L}_{\pi}^{(4)}+\mathcal{L}_{\pi}^{(6)}+\ldots \\
& \# \text { of LECs increasing... }
\end{aligned}
$$

S-wave $\pi \pi$ scattering length

LO: $a_{0}^{0}=0.16 \quad$ [Weinberg '66]
NLO: $a_{0}^{0}=0.20 \quad$ [Gasser, Leutwyler '83]
NNLO: $a_{0}^{0}=0.217$ [Bijnens et al. '95]
NNLO + disp. relations: [Colangelo et al.]
$a_{0}^{0}=0.217 \pm 0.008(\exp) \pm 0.006$ (th)

Summary of Mesonic ChPT

- QCD features approximate $\operatorname{SU}(2)_{\mathrm{L}} \times \operatorname{SU}(2)_{\mathrm{R}}$ symmetry spontaneously broken down to $S U(2)$ v. Pions are Goldstone Bosons of the broken axial generators.
- ChPT = EFT to describe QCD at low energy using GBs \& matter fields as DOF. It provides perturbative (GBs!) expansion of the amplitude in powers of $p \sim M_{\pi}$ over $\Lambda_{X} \sim M_{\rho} \sim 1 \mathrm{GeV}$.
- $\mathcal{L}_{\text {eff }}$ for GBs: Expansion in ∂_{μ} and $M_{\pi}, M_{\pi}^{2}=2 B m_{q}+\mathcal{O}\left(m_{q}^{2}\right)$; pions transform nonlinearly under $\operatorname{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}\left[\mathrm{ccwz]}: \boldsymbol{U} \rightarrow \boldsymbol{L} \boldsymbol{U} \boldsymbol{R}^{\dagger}\right.$.

$$
\begin{aligned}
\mathcal{L}_{\pi} & =\mathcal{L}_{\pi}^{(2)}+\mathcal{L}_{\pi}^{(4)}+\ldots \\
\mathcal{L}_{\pi}^{(2)} & =\frac{\boldsymbol{F}^{2}}{4} \operatorname{Tr}\left(\boldsymbol{\partial}_{\mu} \boldsymbol{U} \partial^{\mu} U\right)+\frac{\boldsymbol{F}^{2} \downarrow^{L E C s}}{2} \boldsymbol{B} \operatorname{Tr}\left(\mathcal{M} U+\boldsymbol{\mathcal { M }} U^{\dagger}\right)
\end{aligned}
$$

- Use DR to calculate Feynman diagrams. Connected diagrams scale as q^{ν},

$$
\nu=2+\underset{\text { \# of loops }}{2} \underset{\uparrow}{L}+\sum_{i} \underset{\substack{i \\ V_{i} \\ \text { \# of vertices } \\ \text { of type } i}}{ } \Delta_{i}, \quad \Delta_{i}=\underset{\text { \# of derivatives \& } M_{\pi}}{d_{i}}
$$

- At each order \boldsymbol{q}^{ν}, a finite number of LECs contribute (exp., lattice, models, ...)

Inclusion of nucleons

3. Inclusion of the nucleons

In the baryon sector, it is more convenient to work with u defined via $\boldsymbol{U}=: \boldsymbol{u}^{2}$. Then:

$$
u \longrightarrow u^{\prime}=\sqrt{R U L^{\dagger}}=: R u K^{-1} \quad \Rightarrow \quad K=\left(\sqrt{R U L^{\dagger}}\right)^{-1} R \sqrt{U}
$$

Notice: the transformation property of \boldsymbol{u} can also be written as $\boldsymbol{u} \longrightarrow \boldsymbol{u}^{\prime}=\boldsymbol{K} \boldsymbol{u} \boldsymbol{L}^{\dagger}$.
The so-called compensator field K is a complicated $S U(2)$-valued function of $\theta^{L}, \theta^{R}, U$ (and thus of space-time), $K=K(L, R, U)$, except for isospin (i.e. vector) rotations with $\theta^{L}=\theta^{R}=\theta^{v}$:

$$
K(V, V, U)=V
$$

Then, one defines the transformation properties of the nucleon fields via: $N \longrightarrow N^{\prime}=K N$
The Coleman-Callan-Wess-Zumino (CCWZ) nonlinear realization of the chiral group:

$$
\binom{U}{N} \xrightarrow{g}\binom{U^{\prime}}{N^{\prime}}=\binom{R U L^{\dagger}}{K(L, R, U) N}
$$

[see e.g. the book by Scherer and Schindler]

To construct the effective Lagrangian, one uses building blocks which transform covariantly with respect to $\operatorname{SU}(2)_{\mathrm{R}} \times \mathrm{SU}(2) \mathrm{L}$

$$
N \longrightarrow N^{\prime}=K N, \quad O_{i} \longrightarrow O_{i}^{\prime}=K O_{i} K^{-1}=K O_{i} K^{\dagger}
$$

to write terms like: $\bar{N} O_{1} \ldots O_{n} N \operatorname{Tr}\left(O_{n+1} \ldots O_{m}\right) \ldots \operatorname{Tr}\left(O_{m+1} \ldots O_{k}\right)$

Inclusion of nucleons

Covariant derivatives of the nucleon and pion fields:

$$
\begin{gathered}
D_{\mu} N:=\left(\partial_{\mu}+\Gamma_{\mu}\right) N, \quad \Gamma_{\mu}:=\frac{1}{2}\left(u^{\dagger} \partial_{\mu} u+u \partial_{\mu} u^{\dagger}\right) \\
u_{\mu}:=i u^{\dagger}\left(\partial_{\mu} U\right) u^{\dagger} \\
\rightarrow \mathcal{L}_{\pi N}=\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\ldots, \quad \mathcal{L}_{\pi N}^{(1)}=\bar{N}\left(i \gamma^{\mu} D_{\mu}-m+\frac{\stackrel{\circ}{g}_{A}}{2} \gamma^{\mu} \gamma_{5} u_{\mu}\right) N \\
g_{A}=G_{A}(0):\left\langle N\left(p^{\prime}\right)\right| A_{i}^{\mu}(0)|N(p)\rangle=: \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} G_{A}(t)+\frac{\left(p^{\prime}-p\right)^{\mu}}{2 m} G_{p}(t)\right] \gamma_{5} \frac{\tau_{i}}{2} u(p)
\end{gathered}
$$

Problem (?): new hard mass scale $\boldsymbol{m} \rightarrow$ power counting ??

$$
\frac{m_{N}}{4 \pi F_{\pi}} \sim 1
$$

divergence has to be absorbed by m from the LO Lagrangian...

Inclusion of nucleons

Making power counting manifest: The Heavy-Baryon approach

Jenkins \& Manohar '91; Bernard, Keiser, Meißner '92; Mannel, Roberts, Ryzak '92
Write the nucleon momentum as $\boldsymbol{p}^{\mu}=\boldsymbol{m} \boldsymbol{v}^{\mu}+\boldsymbol{l}^{\mu}$ with $\boldsymbol{v}^{2}=1$ and $l_{\mu} \ll m$
Split the nucleon fields into $N_{v}=e^{i m v \cdot x} P_{v}^{+} N, \quad h_{v}=e^{i m v \cdot x} P_{v}^{-} N$ with $P_{v}^{ \pm}:=\frac{1 \pm \ngtr}{2}$
For the free Dirac Lagrangian, one then obtains:

$$
\bar{N}(i \not \partial-m) N=\ldots=\bar{N}_{v} i v \cdot \partial N_{v}-\bar{h}_{v}(i v \cdot \partial+2 m) h_{v}+\bar{N}_{v} i \partial_{\perp} h_{v}+=A-(v \cdot A) v, \bar{h}_{v} i \partial_{\perp} N_{v}
$$

\rightarrow the small component h_{v} behaves as a heavy field and can be integrated out:

$$
\mathcal{L}_{\pi N}^{(1)}=\bar{N}_{v}\left(i v \cdot D+g_{A} S \cdot u\right) N_{v}+\mathcal{O}\left(m^{-1}\right) \quad \text { where } \quad S_{\mu} \equiv i \gamma_{5} \sigma_{\mu \nu} v^{\nu}
$$

The HB propagator of the nucleon $S(p)=\frac{\boldsymbol{i}}{\boldsymbol{v} \cdot \boldsymbol{p}+\boldsymbol{i \epsilon}}$ has an obvious interpretation:

$$
S(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p_{0}+i \epsilon} e^{-i p \cdot(x-y)}=\theta\left(x_{0}-y_{0}\right) \delta^{3}(\vec{x}-\vec{y})
$$

Inclusion of nucleons

In the HB formulation, the nucleon mass does not appear in the nucleon propagator and contribute only through $1 / \mathrm{m}$ corrections to vertices \Rightarrow power counting is manifest!

It is easy to derive the power counting formula for the scattering amplitude $T \sim Q^{D}$:
number of vertices from $\mathscr{L}_{\pi}^{\left(d_{i}\right)}$

$$
D=\sum_{i} V_{i}^{\pi} d_{i}+\sum_{i} V_{i}^{N} d_{i}-2 I_{\pi}-I_{N}+4 L \longleftarrow \text { number of loops }
$$

To eliminate I_{π}, use $L=I_{\pi}+I_{N}-\left[\Sigma_{i}\left(V_{i}^{\pi}+V_{i}^{N}\right)-1\right]$. For connected processes with a single nucleon, one can eliminate I_{N} using $I_{N}=\Sigma_{i} V_{i}^{N}-1$. This then leads to:

$$
D=1+2 L+\sum_{i} V_{i}^{\pi}\left(d_{i}-2\right)+\sum_{i} V_{i}^{N} \underbrace{\left(d_{i}-1\right)}_{\left(d_{i}+n_{i} / 2-2\right), \text { where } n_{i}=\# \text { of } N \text {-fields }}
$$

$$
\Rightarrow \quad D=1+2 L+\sum_{i} V_{i} \Delta_{i}, \quad \Delta_{i}=-2+\frac{n_{i}}{2}+d_{i}
$$

Chiral expansion of m_{N} in the HB approach

Dressed HB propagator: $\frac{i}{v \cdot k-\Sigma(k)+i \epsilon}$ \qquad recall the definition of the HB momentum: $p=m v+k$

$$
\Rightarrow k=\left(m_{N}-m\right) v
$$

Up to the order \mathbf{Q}^{3}, the physical mass $\left(p=: m_{N} v\right)$ is given by $m_{N}=m+\Sigma(0)$.
Chiral expansion of the nucleon self energy: $\quad \Sigma(k)=-\underbrace{-\frac{4 c_{1} M^{2}-\vec{k}^{2} /(2 m)}{?}}_{Q^{2}}$

$$
I(0)=-i \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\vec{l} \cdot \vec{l}}{\left(l_{0}+i \epsilon\right)\left(l^{2}-M^{2}+i \epsilon\right)} \xrightarrow{\mathrm{DR}} \frac{M^{3}}{8 \pi} \Rightarrow m_{N}=\underbrace{m-4 c_{1} M^{2}}_{\text {not fixed by } \chi \text {-symmetry }}-\underbrace{\frac{3 g_{A}^{2}}{32 \pi F^{2}} M^{3}}_{\text {ChPT prediction }}+\ldots
$$

How about cutoff regularization? Donoghue, Holstein '98

$$
\begin{aligned}
I_{\Lambda}(0) & =-i \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\vec{l} \cdot \vec{l} e^{-\vec{l}^{2} / \Lambda^{2}}}{\left(l_{0}+i \epsilon\right)\left(l^{2}-M^{2}+i \epsilon\right)} \\
& =\frac{1}{16 \pi^{3 / 2}}\left[\Lambda^{3}-2 \Lambda M^{2}+2 \sqrt{\pi} M^{3} e^{\frac{M^{2}}{\Lambda^{2}}} \operatorname{erfc}\left(\frac{M}{\Lambda}\right)\right] \\
& \xrightarrow{\Lambda \rightarrow \infty} \underbrace{\alpha \Lambda^{3}+\beta \Lambda M^{2}}_{\text {can be absorbed in }}+\frac{M^{3}}{8 \pi}+\mathcal{O}\left(\Lambda^{-1}\right)
\end{aligned}
$$

Limitations of the HB approach

4. Beyond the HB approach

Consider the scalar form factor of the nucleon. Using relativistic nucleon propagators (i.e., no 1/m-expansion) and ignoring the vertex structure, the amplitude is:

$$
J=i \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{1}{\left[l^{2}-M^{2}+i \epsilon\right]\left[(l+q)^{2}-M^{2}+i \epsilon\right]\left[(p-l)^{2}-m^{2}+i \epsilon\right]}
$$

For on-shell nucleons $\left(p^{2}=(p+q)^{2}=m^{2}\right)$, we have $J=J(t)$ with $t=q^{2}$.
The amplitude develops an imaginary part when two intermediate particles can become onshell:

Instead of calculating $J(t)$ (tedious...), one can compute $\operatorname{Im}[J(t)]$ using Cutkosky cutting rules (i.e., replace the cut propagators by the δ-functions enforcing the on-shell relation, see, e.g., Schröder \& Peskin)

Limitations of the HB approach

For $t \geq 4 M^{2}$ (1st graph): $\quad \operatorname{Im}[J(t)]=\frac{1}{8 \pi} \frac{1}{\sqrt{t\left(4 m^{2}-t\right)}} \arctan \left[\frac{\sqrt{\left(t-4 M^{2}\right)\left(4 m^{2}-t\right)}}{t-2 M^{2}}\right]$
We now perform the $1 / m$-expansion of this result for $t=\mathcal{O}\left(M^{2}\right) \equiv \mathcal{O}\left(Q^{2}\right)$:

$$
\frac{\sqrt{\left(t-4 M^{2}\right)\left(4 m^{2}-t\right)}}{t-2 M^{2}} \sim \mathcal{O}\left(\frac{m}{Q}\right) \gg 1 \Rightarrow \arctan (x) \xrightarrow{x \gg 1} \underbrace{\frac{\pi}{2}-\frac{1}{x}+\frac{1}{3 x^{3}}+\ldots}_{\text {converges for } x>1}
$$

This expansion (+ pre-factor) is the HB expansion: $\operatorname{Im}[J(t)] \stackrel{\mathrm{HB}}{=} \frac{1}{8 \pi} \frac{1}{2 m \sqrt{t}} \frac{\pi}{2}+\mathcal{O}\left(m^{0}\right)$
Problem: it breaks down in the vicinity of $t \approx 4 M^{2}: \quad x<1 \Rightarrow 4 M^{2} \leq t \lesssim 4 M^{2}\left(1+\frac{M^{2}}{m^{2}}\right)$
Solution 1: Infrared Regularization Becher, Leutwyler '99

Limitations of the HB approach

The IR approach: expand the integrand in $1 / \mathrm{m}$, compute the integrals using DR (power counting manifest) and resum all contributions... Schindler et al.'03

(At the 1-loop level can also be realized by selecting out the infrared singular parts of the integrals Becher, Leutwyler '99.)

Disadvantage: violates the analytic structure of the amplitude (for hard momenta).

Solution 1: The Extended On-Mass-Shell (EOMS) Renormalization scheme

 Gegelia, Japaridze '99; Fuchs et al. '03Main idea: work in the manifestly covariant approach and restore chiral power counting by using appropriate renormalization conditions (i.e., perform additional finite subtractions of PC violating terms involving positive powers of the nucleon mass)

This is nowadays the standard approach for baryon ChPT...

(Some) topics in and beyond ChPT

- Resummation of leading Log's

Weinberg, Bijnens, Colangelo, Bissiger, Fuhrer, Kivel, Polyakov, Vladimirov, ...
Leading logs can be computed for higher loops, all orders possible in certain cases

- Combining ChPT and dispersion theory

Colangelo, Gasser, Leutwyler, Bernard, Meißner, Descotes Genon, Knecht, Pelaez, Hoferichter, Kubis, Ruiz de Elvira, ...

- Covariant baryon ChPT

Becher, Leutwyler, Bernard, Meißner, Kubis, Gegelia, Scherer, Camalich, Geng, Ren, ...

- ChPT with explicit spin-3/2 degrees of freedom

Hemmert, Bernard, Fettes, Meißner, Pascalutsa, Vanderhaeghen, Kaiser, Gegelia, EE, Gasparyan, Krebs, Siemens, ... $\Delta(1232)$ has low excitation energy $\sim 300 \mathrm{MeV} \rightarrow$ better to include as an explicit DOF...

- ChPT and/for lattice QCD

Colangelo, Beane, Savage, Jiang, Tiburzi, Procura, Weise, Walker Loud, Bernard, Meißner, Rusetsky, Hemmert, ...
Chiral extrapolations, finite volume corrections, quenched ChPT, ...

- Unitarized ChPT and resonance physics

Oeller, Meißner, Dobado, Pelaez, Oset, Hanhart, Llanes-Estrada, Kaiser, Weise, ,...

Summary of part I

- QCD is approximately $\operatorname{SU}(2)_{\llcorner } \times \operatorname{SU}(2)_{\mathrm{R}}$ invariant. The chiral symmetry is spontaneously broken down to SU(2)v (isospin group). Pions are Goldstone Bosons of the broken axial generators. They would be massless in the chiral limit.
- It is easy to write down the most general chiral invariant effective Lagrangian for pions. The choice of a particular realization of the chiral group is irrelevant (provided proper imbedding of the isospin group). Thanks to the Goldstone Bosons nature, only derivative interactions are allowed \rightarrow suppression at low energy! Can incorporate explicit breaking due to the quark masses.
- Feynman calculus using DR: every loop is suppressed by Q2 (power counting) \rightarrow quantum corrections can be calculated in perturbation theory.
- It is straightforward to extend the effective Lagrangian to nucleons. Because of the nucleon mass, loops calculated with just DR are not suppressed. Either use additional finite subtractions (EOMS) or perform nonrelativistic expansion of the Lagrangian (the HB approach).

