Chiral effiective field theory for nuclear forces

Summary day 3

- Effective range expansion, pionless EFT, naturalness and fine tuning, power counting and renormalization conditions, RG analysis, explicit and implicit renormalization, ...

Today: Inclusion of pions

II Thw'K you SHCULD BC MCRE Expular HERTE IN STET TVDO: "

Outiline day 4

Part I: Concepts and the framework

- Are pions perturbative? How to test the long-range dynamics?

1. Low-energy theorems (LETs) and the modified ERE
2. KSW with perturbative pions
3. Non-perturbative inclusion of pions
4. How not to renormalize the Schrödinger eq.

Part II: Methods

- how to derive nuclear forces \& currents?

1. Introduction
2. Method of Unitary Transformation
3. Merging MUT with ChPT
4. Example: NLO correction to the NN force
5. A note on renormalization

Modified Effective Range Expansion (MERE)

1. LETs and the MERE

What are the low-energy theorems?
Two-range potential: $V(r)=V_{L}(r)+V_{S}(r)$

$$
\text { with } M_{L}^{-1} \rightrightarrows M_{H}^{-1}
$$

- $F_{l}\left(k^{2}\right)$ is meromorphic in $|k|<M_{L} / 2$

$$
F_{l}^{R j}\left(k^{2}\right) \equiv M_{l}^{L}(k)+\frac{k^{2 l+1}}{\mid f_{l}^{L}(k)^{2}} \cot \left[\delta_{l}(k)-\delta_{l}^{L}(k)\right]
$$

\longleftarrow modified effective range function van Haeringen, Kok '82

$$
\underbrace{f_{l}^{L}(k)}=\lim _{r \rightarrow 0}\left(\frac{l!}{(2 l)!}(-2 i k r)^{l^{\prime} f_{l}^{L}(k, r)}\right)
$$

Jost function for $v_{L}(\vec{r})$
Jost solution for $v_{L}(r)$

$$
M_{l}^{L}(k)=R e\left[\frac{(-i k / 2)^{i}}{l!} \lim _{r \rightarrow 0}\left(\frac{d^{2 i+1}}{d r^{2 l+1}} \frac{r^{i} f_{l}^{L}(k, r)}{f_{i}^{L}(k)}\right)\right]
$$

Per construction, $F_{l}^{M /}$ reduces to F_{l} for $V_{L}=0$ and is meromorphic in $|\bar{k}|<M_{i i} / 2$

MERE and low-energy theorems

Example: proton-proton scattering

$$
\begin{gathered}
F_{0}\left(k^{2}\right)=C_{0}^{2}(\eta) k \cot \left[\delta(k)-\delta^{C}(k)\right]+2 k \eta h(\eta)=-\frac{1}{a^{M}}+\frac{1}{2} \eta^{M} k^{2}+v_{2}^{2 /} k^{4}+\ldots \\
\text { where } \underbrace{\delta^{C}=\arg \Gamma(1+i \eta),}_{\text {Coulomb phase shift }} \eta=\frac{m}{2 k} \alpha, \underbrace{C_{0}^{2}(\eta)=\frac{2 \pi \eta}{e^{2 \pi \eta}-1}}_{\text {Sommerfeld factor }}, h(\eta)=\operatorname{Re}[\underbrace{T(i n)}_{\text {Digamma function } \Psi(z) \equiv T^{\top}(z) / \Gamma(z)}-\ln (\eta)
\end{gathered}
$$

MERE and low-energy theorems

Long-range forces impose correlations between the ER coefficients (low-energy theorems) [Cohen, Hansen '99; Steele, Furnstahl '00]

The emergence of the LETs can be understood in the framework of MERE:

can be computed if the long-range force is known

- approximate $F_{i}^{M}\left(k^{2}\right)$ by first $1,2,3, \ldots$ terms in the Taylor expansion in k^{2}
- calculate all "soft" quantities
- reconstruct $\bar{z}_{T}^{I}(k)$ and predict all coefficients in the ERE

Toy model: Low-energy theorems

$$
\left.\begin{array}{l}
V(r)=\underbrace{v_{L} e^{-M_{L} r} f(r)}_{V_{L}}+\underbrace{v_{H} e^{-M_{H} r} f(r)}_{V_{H}} \\
\text { where } f(r)=\frac{\left(M_{H I} r\right)^{2}}{1+\left(M_{H} r\right)^{2}} \\
\text { and } M_{L}=1.0, v_{L}=-0.875, M_{H}=3.75, v_{H}=7.5 \quad(\mathrm{all} \mathrm{in} \mathrm{fm} \\
-1
\end{array}\right)
$$

ERE and MERE

	a	r	v_{2}	v_{3}	v_{4}
$F_{0}\left[\mathrm{fm}^{n}\right]$	5.458	2.432	0.113	0.515	-0.993
$F_{0}^{M}\left[M_{S}^{-n}\right]$	1.710	-1.003	-0.434	-0.680	2.624

Toy model: Low-energy theorems

$V(r)=\underbrace{v_{L} e^{-M_{L} r} f(r)}_{V_{L}}+$
where $f(r)=\frac{\left(M_{H} r\right)^{2}}{1+\left(M_{H} r\right)^{2}}$
and $M_{L}=1.0, v_{L}=0.875$,

ERE and MERE

	a	r	v_{2}	v_{3}	v_{4}
$F_{0}\left[\mathrm{fm}^{n}\right]$	5.458	2.432	0.113	0.515	-0.993
$F_{0}^{M}\left[M_{S}^{-n}\right]$	1.710	-1.003	-0.434	-0.680	2.624

for an analytic example, see EE, Gegelia, EPJ A41 (2009) 341
Low-Energy Theorems

	LO	NLO	NNLO	"Exp"
r	$2.447(38)$	2.432197161	2.432197161	2.432197161
v_{2}	$0.12(11)$	$0.1132(29)$	0.112815751	0.112815751
v_{3}	$0.61(12)$	$0.517(16)$	$0.51533(20)$	0.51529
v_{4}	$-0.95(5)$	$-0.991(14)$	$-0.9925(11)$	-0.9928

Toy model: phase shifits \& error plots

Error plots for $\delta^{M i}(k)$

Error plots for $\bar{\sigma}(k)$

Chiral Erl for NN scattering

2. KSW with perturbative pions

Recall the differences between the W and KSW counting schemes:

- Weinberg: $\quad \mu \sim \mathcal{O}(1), \quad \mu_{i} \sim \mathcal{O}(p) \quad \rightarrow \quad V_{\text {Weinberg }}^{\text {LO }} \sim \mathcal{O}(1), \quad V_{\text {Weinberg }}^{\mathrm{NLO}} \sim \mathcal{O}\left(p^{2}\right)$ [i.e. scaling of $\mathrm{C}_{2 n}$ according to NDA ($\left.\sim \mathrm{O}(1)\right)$]
- KSW: $\mu, \mu_{i} \sim \mathcal{O}(p) \quad \rightarrow \quad V_{\mathrm{KSW}}^{\mathrm{LO}} \sim \mathcal{O}\left(p^{-1}\right), \quad V_{\mathrm{KSW}}^{\mathrm{NLO}} \sim \mathcal{O}(1)$
[i.e. scaling of $\mathrm{C}_{2 n}$ as $\mathrm{C}_{2 n} \sim \mathrm{O}\left(\mathrm{p}^{-1-n}\right)$]
While the two schemes are equivalent for pionless theory, they suggest different scenarios for pionful (chiral) EFT:

$$
V_{1 \pi}=-\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2} \frac{\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}}{q^{2}+M_{\pi}^{2}} \vec{\tau}_{1} \cdot \vec{\tau}_{2} \sim \mathcal{O}(1)
$$

OPE is expected to be:

- LO contribution (nonperturbative) in the Weinberg scheme,
- NLO contribution (perturbative) in the KSW scheme.

Chiral EFT for NN: The KSW approach

LO amplitude \mathcal{A}_{-1}

- Leading order: $\rightarrow \rightarrow+$
- NLO: $\mathcal{A}_{0}=$

$$
\begin{aligned}
\mathcal{A}_{0}^{(I)} & =-C_{2}^{\left(1 S_{0}\right)} p^{2}\left[\frac{\mathcal{A}_{-1}}{C_{0}^{\left(1 S_{0}\right)}}\right]^{2}, \quad \mathcal{A}_{0}^{(I I)}=\left(\frac{g_{A}^{2}}{2 f^{2}}\right)\left(-1+\frac{m_{\pi}^{2}}{4 p^{2}} \ln \left(1+\frac{4 p^{2}}{m_{\pi}^{2}}\right)\right) \\
\mathcal{A}_{0}^{(I I I)} & =\frac{g_{A}^{2}}{f^{2}}\left(\frac{m_{\pi} M \mathcal{A}_{-1}}{4 \pi}\right)\left(-\frac{(\mu+i p)}{m_{\pi}}+\frac{m_{\pi}}{2 p}\left[\tan ^{-1}\left(\frac{2 p}{m_{\pi}}\right)+\frac{i}{2} \ln \left(1+\frac{4 p^{2}}{m_{\pi}^{2}}\right)\right]\right) \\
\mathcal{A}_{0}^{(I V)} & =\frac{g_{A}^{2}}{2 f^{2}}\left(\frac{m_{\pi} M \mathcal{A}_{-1}}{4 \pi}\right)^{2}\left(-\left(\frac{\mu+i p}{m_{\pi}}\right)^{2}+\left[i \tan ^{-1}\left(\frac{2 p}{m_{\pi}}\right)-\frac{1}{2} \ln \left(\frac{m_{\pi}^{2}+4 p^{2}}{\mu^{2}}\right)+1\right]\right)
\end{aligned}
$$

$$
\mathcal{A}_{0}^{(V)}=-D_{2}^{\left({ }^{1} S_{0}\right)} m_{\pi}^{2}\left[\frac{\mathcal{A}_{-1}}{C_{0}^{\left(1 S_{0}\right)}}\right]^{2}
$$

For more details see:
Kaplan, Savage, Wise, Nucl. Phys. B534 (1998) 329.

LETIS for NN S-waves

Use these results to test the LETs for S-waves: [Cohen, Hansen, PRC 59 (1999) 13]

$$
p \cot \delta_{0}(p)=\frac{4 \pi}{m}\left[\frac{1}{\mathcal{A}_{-1}}-\frac{\mathcal{A}_{0}}{\left(\mathcal{A}_{-1}\right)^{2}}+\ldots\right]+i p \stackrel{!}{=}-\frac{1}{a}+\frac{1}{2} r p^{2}+v_{2} p^{4}+v_{3} p^{6}+v_{4} p^{8}+\ldots
$$

Express the LECs $\mathrm{C}_{0}, \mathrm{C}_{2}$, in terms of \boldsymbol{a} and \boldsymbol{r} to predict the shape parameters, e.g.:

$$
v_{2}=\frac{g_{A}^{2} m}{16 \pi F_{\pi}^{2}}\left(-\frac{16}{3 a^{2} M_{\pi}^{4}}+\frac{32}{5 a M_{\pi}^{3}}-\frac{2}{M_{\pi}^{2}}\right), \quad v_{3}=\frac{g_{A}^{2} m}{16 \pi F_{\pi}^{2}}\left(\frac{16}{a^{2} M_{\pi}^{6}}-\frac{128}{7 a M_{\pi}^{5}}+\frac{16}{3 M_{\pi}^{4}}\right), \ldots
$$

${ }^{1} S_{0}$ partial wave	$a[\mathrm{fm}]$	$r[\mathrm{fm}]$	$v_{2}\left[\mathrm{fm}^{3}\right]$	$v_{3}\left[\mathrm{fm}^{5}\right]$	$v_{4}\left[\mathrm{fm}^{7}\right]$
NLO KSW Cohen, Hansen '99	fit	fit	-3.3	18	-108
Nijmegen PWA	-23.7	2.67	-0.5	4.0	-20

${ }^{3} S_{1}$ partial wave	$a[\mathrm{fm}]$	$r[\mathrm{fm}]$	$v_{2}\left[\mathrm{fm}^{3}\right]$	$v_{3}\left[\mathrm{fm}^{5}\right]$	$v_{4}\left[\mathrm{fm}^{7}\right]$
NLO KSW cohen, Hansen'99	fit	fit	-0.95	4.6	-25
Nijmegen PWA	5.42	1.75	0.04	0.67	-4.0

\rightarrow large deviations suggest that pions should be treated nonperturbatively.. [even stronger evidence comes from phase shifts at N2LO, see: Fleming, Mehen, Stewart, NPA 677 (2000) 313]

Nonperturbative inclusion of pions

3. Nonperturbative inclusion of pions

LO scattering amplitude:

$$
T\left(\vec{p}^{\prime}, \vec{p}\right)=\left[V_{\mathrm{cont}}\left(\vec{p}^{\prime}, \vec{p}\right)+V_{1 \pi}\left(\vec{p}^{\prime}, \vec{p}\right)\right]+m \int \frac{d^{3} l}{(2 \pi)^{3}} \frac{\left[V_{\mathrm{cont}}\left(\vec{p}^{\prime}, \vec{l}\right)+V_{1 \pi}\left(\vec{p}^{\prime}, \vec{l}\right)\right] T(\vec{l}, \vec{p})}{p^{2}-l^{2}+i \epsilon}
$$

Complications (as compared to pionless theory):

- $V_{1 \pi}$ is not separable, no analytic results beyond 2 loops are available,
$-1 / r^{3}$ singularity of $V_{1 \pi}$
Static OPEP in coordinate space:

$$
V_{1 \pi}(\vec{r})=\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2} \tau_{1} \cdot \tau_{2}[M_{\pi}^{2} \frac{e^{-M_{\pi} r}}{12 \pi r}(S_{12}(\hat{r})(1+\frac{3}{M_{\pi} r}+\underbrace{\left.\frac{3}{\left(M_{\pi} r\right)^{2}}\right)}_{\text {tensor operator: } S_{12}=3 \vec{\sigma}_{1} \cdot \hat{r} \vec{\sigma}_{2} \cdot \hat{r}-\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}}+\vec{\sigma}_{1} \cdot \vec{\sigma}_{2})-\frac{1}{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \delta^{3}(r)]
$$

\rightarrow Need counter terms in all spin-triplet waves! In fact, infinitely many c.t.'s are needed in every spin-triplet channel to remove UV divergences from iterations...

Nonperturbative inclusion of pions

3. Nonperturbative inclusion of pions

LO scattering amplitude:

$$
T\left(\vec{p}^{\prime}, \vec{p}\right)=\left[V_{\mathrm{cont}}\left(\vec{p}^{\prime}, \vec{p}\right)+V_{1 \pi}\left(\vec{p}^{\prime}, \vec{p}\right)\right]+m \int \frac{d^{3} l}{(2 \pi)^{3}} \frac{\left[V_{\mathrm{cont}}\left(\vec{p}^{\prime}, \vec{l}\right)+V_{1 \pi}\left(\vec{p}^{\prime}, \vec{l}\right)\right] T(\vec{l}, \vec{p})}{p^{2}-l^{2}+i \epsilon}
$$

Complications (as compared to pionless theory):

- $V_{1 \pi}$ is not separable, no analytic results beyond 2 loops are available,
$-1 / r^{3}$ singularity of $V_{1 \pi}$
Static OPEP in coordinate space:

$$
V_{1 \pi}(\vec{r})=\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2} \tau_{1} \cdot \tau_{2}[M_{\pi}^{2} \frac{e^{-M_{\pi} r}}{12 \pi r}(S_{12}(\hat{r})(1+\frac{3}{M_{\pi} r}+\underbrace{\frac{3}{\text { tensor operator: }} \vec{S}_{12}=3 \vec{\sigma}_{1} \cdot \hat{r} \vec{\sigma}_{2} \cdot \hat{r}-\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}}_{\left.\begin{array}{c}
\text { singular potential in all } \mathrm{S}=1 \\
\left(M_{\pi} r\right)^{2}
\end{array}\right)})-\frac{1}{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \delta^{3}(r)]
$$

E.g.:

$$
\propto \frac{1}{d-4} \vec{p}^{6} m_{N}^{6}
$$

Re-summation of ladder dilagrams

Certain terms in the amplitude must be re-summed (ladder-type graphs enhanced Weinberg '90, '91)

$$
\begin{aligned}
& \left\{\left.--\frac{l_{2}}{---} \right\rvert\,\right. \\
& \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{i\left(2 m_{N}\right)^{2} l_{1}^{i} l_{1}^{j} l_{2}^{k} l_{2}^{l}}{\left[(p-l)^{2}-m_{N}^{2}+i \epsilon\right]\left[(p+l)^{2}-m_{N}^{2}+i \epsilon\right]\left[l_{1}^{2}-M_{\pi}^{2}+i \epsilon\right]\left[l_{2}^{2}-M_{\pi}^{2}+i \epsilon\right]} \xrightarrow{\text { NDA }} \mathcal{O}\left(Q^{2}\right)
\end{aligned}
$$

Divergent integrals in the Lippmann-Schwinger equation are usually regularized with a cutoff \wedge :

- the „RG invariant" approach with $\Lambda \gg \Lambda_{b}: T \sim 1+\Lambda+\Lambda^{2}+\ldots=(1-\Lambda)^{-1}$ van Kolck, Long, Yang,
- criticized in EE, Gegelia, EPJA 41 (09) 341; EE, Gasparyan, Gegelia, Meißner, EPJA 54 (18) 186
- in fact, not RG-invariant beyond LO Ashot Gasparyan, EE, to appear
- finite- Λ EFT with $\Lambda \lesssim \Lambda_{b} \sim 600 \mathrm{MeV}$ Lepage, EE, Gegelia, Meißner, Reinert, Entem, Machleidt, ...
- phenomenologically successful; approximate Λ-independence verified a posteriori
- renormalizability (in the EFT sense) has been rigorously proven to NLO using the BPHZ subtraction method (forest formula) Ashot Gasparyan, EE, PRC 105 (2022) 024001; to appear

Nonperturbative inclusion of pions

LETs for neutron-proton scattering: nonperturbative vs perturbative OPEP

${ }^{3} \mathrm{~S}_{1}$ partial wave					
LO ${ }_{\text {eE, Gegelia, PLB617 (12) } 338}$	fit	1.60	-0.05	0.82	-5.0
NLO Baru et al., PRC94 (16) 014001	fit	fit	0.06	0.70	-4.0
NLO KSW Cohen, Hansen '98	fit	fit	-0.95	4.6	-25
Empirical values	5.42	1.75	0.04	0.67	-4.0

- perturbative inclusion of pions (KSW approach) fails
- ${ }^{1}$ So channel: limited predictive power of the LETs due to the weakness of the OPEP; taking into account the range correction (NLO) leads to improvement
- ${ }^{3} \mathrm{~S}_{1}$ channel: LETs work as advertised (strong tensor part of the OPEP)

Renormallzation vs. peratization

4) How not to renormalize the Schrödinger equation

A toy model with separable interactions: $\boldsymbol{V}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)=\boldsymbol{v}_{l} \boldsymbol{F}_{l}(\boldsymbol{p}) \boldsymbol{F}_{l}\left(\boldsymbol{p}^{\prime}\right)+\boldsymbol{v}_{s} \boldsymbol{F}_{s}(\boldsymbol{p}) \boldsymbol{F}_{s}\left(\boldsymbol{p}^{\prime}\right)$
with the form-factors: $F_{l}(p) \equiv \frac{\sqrt{p^{2}+m_{s}^{2}}}{p^{2}+m_{l}^{2}}, \quad F_{s}(p) \equiv \frac{1}{\sqrt{p^{2}+m_{s}^{2}}}$
It is convenient to express $\boldsymbol{v}_{l, s}$ in terms of the dimensionless $\boldsymbol{\alpha}_{l, s}, a_{l, s}=: \boldsymbol{\alpha}_{l, s} / m_{l, s}$
"Chiral expansion" of the ERE coefficients:

$$
\begin{aligned}
a & =\frac{1}{m_{l}}\left(\alpha_{a}^{(0)}+\alpha_{a}^{(1)} \frac{m_{l}}{m_{s}}+\alpha_{a}^{(2)} \frac{m_{l}^{2}}{m_{s}^{2}}+\ldots\right) \\
r & =\frac{1}{m_{l}}\left(\alpha_{r}^{(0)}+\alpha_{r}^{(1)} \frac{m_{l}}{m_{s}}+\alpha_{r}^{(2)} \frac{m_{l}^{2}}{m_{s}^{2}}+\ldots\right) \\
v_{i} & =\frac{1}{m_{l}^{2 i-1}}\left(\alpha_{v_{i}}^{(0)}+\alpha_{v_{i}}^{(1)} \frac{m_{l}}{m_{s}}+\alpha_{v_{i}}^{(2)} \frac{m_{l}^{2}}{m_{s}^{2}}+\ldots\right)
\end{aligned}
$$

The dimensionless coefficients $\alpha_{a}^{(n)}, \alpha_{r}^{(n)}$ and $\alpha_{v_{i}}^{(n)}$ are determined by the form of the interaction and expressible in terms of $\alpha_{l, s}$.

Renormallzation vs. peratization

For example, the scattering length:

$$
\alpha_{a}^{(0)}=\alpha_{l}, \quad \alpha_{a}^{(1)}=\left(\alpha_{l}-1\right)^{2} \alpha_{s}, \quad \alpha_{a}^{(2)}=\left(\alpha_{l}-1\right)^{2} \alpha_{l} \alpha_{s}^{2}, \quad \ldots
$$

Similarly, for the effective range: $\alpha_{r}^{(0)}=\frac{3 \alpha_{l}-4}{\alpha_{l}}, \quad \alpha_{r}^{(1)}=\frac{2\left(\alpha_{l}-1\right)\left(3 \alpha_{l}-4\right) \alpha_{s}}{\alpha_{l}^{2}}$,

$$
\alpha_{r}^{(2)}=\frac{\left(\alpha_{l}-1\right)\left(3 \alpha_{l}-4\right)\left(5 \alpha_{l}-3\right) \alpha_{s}^{2}+\left(2-\alpha_{l}\right) \alpha_{l}^{2}}{\alpha_{l}^{3}}, \quad \ldots
$$

[Notice: in the considered model, short-range interaction is suppressed. Consequently, the 1st terms in the "chiral expansion" are determined by the long-range force alone.]

Consider now the effective theory by replacing the short-range interaction by contact terms.

$$
V=\frac{\cdots}{\text { long-range }}+\frac{C_{C}}{C}+{ }_{C_{0}}
$$

LO: long-range interaction alone, trivially reproduce $\alpha_{a}^{(0)}, \boldsymbol{\alpha}_{r}^{(0)}$ and $\boldsymbol{\alpha}_{v_{i}}^{(0)}$ (LETs)
NLO: C_{0} is insufficient to absorb all UV divergences \rightarrow do a finite- \wedge theory:

- calculate the amplitude for a fixed Λ,
- renormalize by tuning $\mathrm{C}_{0}(\Lambda)$ to the scattering length (viewed as "datum")

Renormalization vs. peratization

According to the LETs, expect to reproduce $\boldsymbol{\alpha}_{r}^{(1)}, \boldsymbol{\alpha}_{v_{i}}^{(1)}$. E.g. the effective range:

$$
\begin{aligned}
r_{\Lambda}=\frac{1}{m_{l}}\left[\frac{3 \alpha_{l}-4}{\alpha_{l}}\right. & +\overbrace{\frac{2\left(\alpha_{l}-1\right)\left(3 \alpha_{l}-4\right) \alpha_{s}}{\alpha_{l}^{2} m_{s}}}^{\text {LO LET }}+\left(\frac{4\left(\alpha_{l}-2\right) \alpha_{s}}{\pi \alpha_{l} m_{s}^{2}}\left(\ln \frac{m_{s}}{2 \Lambda}+1\right)\right. \\
& \left.\left.+\frac{\left(\alpha_{l}-1\right)\left(3 \alpha_{l}-4\right)\left(5 \alpha_{l}-3\right) \alpha_{s}^{2}+\left(2-\alpha_{l}\right) \alpha_{l}^{2}}{\alpha_{l}^{3} m_{s}^{2}}\right) m_{l}^{2}+\mathcal{O}\left(m_{l}^{3}\right)\right]
\end{aligned}
$$

Works as advertised. Λ-dependence appears in terms beyond the accuracy of the calculation. For $\Lambda \sim m_{s}$, their contributions are suppressed (NDA).

Infinite-^ limit (peratization)

Take the limit $\boldsymbol{T}_{\infty}:=\lim _{\Lambda \rightarrow \infty} \boldsymbol{T}_{\Lambda}(\boldsymbol{p}, \boldsymbol{p})$. Fixing again $\boldsymbol{C}_{0}(\infty)$ from the scattering length we get Λ-independent predictions for the effective range (and shape parameters):

$$
\begin{aligned}
r_{\infty}=\frac{1}{m_{l}}\left[\frac{3 \alpha_{l}-4}{\alpha_{l}}\right. & +\frac{4\left(\alpha_{l}-1\right)^{2} \alpha_{s}}{\alpha_{l}^{2} m_{s}} m_{l} \\
& \left.+\frac{\alpha_{l}^{3}\left(8 \alpha_{s}^{2}-1\right)+\alpha_{l}^{2}\left(2-20 \alpha_{s}^{2}\right)+16 \alpha_{l} \alpha_{s}^{2}-4 \alpha_{s}^{2}}{\alpha_{l}^{3} m_{s}^{2}} m_{l}^{2}+\ldots\right]
\end{aligned}
$$

Summary of part I

- Long-range interactions control the near-threshold energy behavior of the amplitude and lead to LETs. Application of the LETs to NN scattering suggests that the OPEP has to be treated non-perturbatively in the ${ }^{3} S_{1}{ }^{-3} \mathrm{D}_{1}$ channel.
- Iterations of the OPEP in the LS equation require an infinite number of counter terms. It is not known how to subtract all UV divergences in that case. Thus, one has to work with a finite cutoff \wedge of the order of the breakdown scale Λ_{b} (implicit renormalization by tuning bare LECs to experimental data).
- Choosing the cutoff $\Lambda \gg \Lambda_{b}$ without including ALL counter terms necessary to absorb the UV divergences is generally dangerous (even is the $\Lambda \rightarrow \infty$ limit for the amplitude exists...).

See also:
EE, Gasparyan, Gegelia, Meißner, „How (not) to renormalize integral equations with singular potentials in EFT", Eur. Phys. J. A54 (2018) 186.

Part II: Methods

How to derive nuclear forces and currents?

Introduction

1. Introduction

Recall our framework:

$$
[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2 m_{N}}+\mathcal{O}\left(m_{N}^{-3}\right)\right)+\underbrace{V_{2 N}+V_{3 N}+V_{4 N}+\ldots}_{\text {derived in ChPT }}]|\Psi\rangle=E|\Psi\rangle
$$

Nuclear forces \& currents are defined as irreducible contributions to the amplitude [i.e. the ones which are not generated by iterations of the LS equation].

They can be derived using a variety of methods including [In all cases, utilize a perturbative expansion within ChPT]:

- S-matrix matching [Kaiser et al.]
- time-ordered perturbation theory [Pastore, Baroni, Schiavilla et al.]
- method of unitary transformations (UTs) [EE, Glöckle, Meißner, Krebs, Kölling]

More challenging than just calculating Feynman diagrams:

- need to subtract reducible pieces in order to avoid double counting
- have to deal with non-uniqueness of nuclear potentials
- want to maintain renormalizability

Intiroduction

Matching to the amplitude Kaiser et al.

Higher-order terms in the Hamiltonian „know" about the choice made for the off-shell extension (consistency...)

Are nuclear potentials well-defined (i.e. finite)?
not necessarily

So far, it was always possible to renormalize nuclear forces by systematically exploiting their unitary ambiguity...

Method of UT

2. Method of unitary transformation

Taketani, Mashida, Ohnuma'52; Okubo '54; EE, Glöckle, Meißner, Krebs, Kölling, ...
(i) Canonical transformation \& quantization: $\quad \mathcal{L}_{\pi N} \longrightarrow \mathcal{H}_{\pi \mathrm{N}}=\quad \underset{-}{\prime}+\underset{\gamma^{\prime}}{\prime}+\ldots$

(ii) Decouple pions via a suitable UT: $\tilde{H} \equiv U^{+}\left(\begin{array}{cc}\eta H \eta & \eta H \lambda \\ \lambda H \eta & \lambda H \lambda\end{array}\right) U=\left(\begin{array}{cc}\eta \tilde{H} \eta & 0 \\ 0 & \lambda \tilde{H} \lambda\end{array}\right)$

$$
\text { Require: } \eta \vec{H} \lambda=\lambda \tilde{H} \eta=0 \longrightarrow \lambda(H-[A, H]-A H A) \eta-0
$$

The major problem is to solve the nonlinear decoupling equation.
Notice: similar methods widely used in nuclear \& many-body physics (Lee-Suzuki)

Method of UT

Once the operator A is calculated, nuclear forces are determined via:

$$
V=\eta\left(\tilde{H}-H_{0}\right)=\eta\left[\left(1+A^{\dagger} A\right)^{-1 / 2}\left(H+A^{\dagger} H+H A+A^{\dagger} H A\right)\left(1+A^{\dagger} A\right)^{-1 / 2}-H_{0}\right] \eta
$$

In QFT, block-diagonalization of the Hamilton operator can usually only be achieved in perturbation theory...

Example: expansion in powers of the coupling constant

$$
H_{l}=\square \text { ansatz: } A=A^{(1)}+A^{(2)}+A^{(3)}+\ldots
$$

Recursive solution of the decoupling equation $\lambda(H-[A, H]-A H A) \eta=0$

$$
\begin{array}{lll}
g^{1}: \lambda\left(I_{I}-\left[A^{(1)}, I_{0}\right]\right) \eta=0 & \longrightarrow & A^{(1)}=\lambda \frac{H_{I}}{E_{\eta}-E_{\lambda}} \eta \\
g^{2}: \lambda\left(I_{T} A^{(1)}-\left[A^{(2)}, I_{0}\right]\right) \eta=0 & \longrightarrow & A^{(2)}=\lambda \frac{H_{I} A^{(1)}}{E_{\eta}-E_{\lambda}} \eta
\end{array}
$$

Method of UT

One then obtains:

$$
\begin{aligned}
V_{\mathrm{eff}} & =\eta\left[\left(1+A^{\dagger} A\right)^{-1 / 2}\left(H+A^{\dagger} H+H A+A^{\dagger} H A\right)\left(1+A^{\dagger} A\right)^{-1 / 2}-H_{0}\right] \eta \\
& =\eta A^{(1)^{\dagger}} \lambda H_{I} \eta+\eta H_{I} \lambda A^{(1)} \eta+\eta{A^{(1)}}^{\dagger} \lambda H_{0} A^{(1)} \eta+\mathcal{O}\left(g^{3}\right)
\end{aligned}
$$

In the static approximation (i.e. in the limit $m \rightarrow \infty$), one has:

$$
E_{\eta}-E_{\lambda} \simeq E_{\pi} \equiv \omega \quad \longrightarrow \quad V_{\mathrm{eff}}^{(2)}=-\eta H_{I} \frac{\lambda}{\omega} H_{I} \eta
$$

Take the LO $\pi \mathrm{N}$ vertex: $\quad \mathcal{H}_{\mathcal{I}}=-\mathcal{L}_{\mathcal{I}}=\frac{g_{A}}{2 F_{\pi}} N^{\dagger}(\vec{\sigma} \vec{\tau} \cdot \cdot \vec{\nabla} \vec{\pi}) N$
$\left\langle\vec{p}^{\prime}\right| H_{I}|\vec{p} ; \vec{q}, a\rangle=\frac{i g_{A}}{2 F_{\pi}} \frac{1}{\sqrt{2 \omega_{q}}} \vec{\sigma} \cdot \vec{q} \tau^{a} \times \delta^{3}(\ldots) \rightarrow$ Feynman-like rule for $\quad \rightarrow \vec{q}, a$,

- The chiral expansion can be cast into the form similar to the expansion in powers of the coupling constant. Ee, Eur. Phys. J. A 34 (2007) 197
- The resulting potentials at N3LO and beyond calculated using DR can not be made finite - enforce renormalizability by exploiting unitary ambiguity.

Merging MUT with ChPT

3. Merging MUT with ChPT [EE, Glöckle MeiBner '98; EE, EPJA 34 (2007) 197]

Chiral expansion is not an expansion in powers of momenta. How to derive nuclear forces utilizing the chiral expansion?

Perfect for diagrams, but inconvenient for solving $\lambda(H-[A, H]-A H A) \eta=0$
Rewrite in a more convenient way. Trick: count powers of the hard scale Λ_{b} rather than of the soft scale Q. The only way for Λ_{b} to emerge is through the LECs of the effective Lagrangian. Thus, the power \boldsymbol{v} is given by:

$$
\nu=-2+\sum_{i} V_{i} \kappa_{i}
$$

where $\boldsymbol{\kappa}$ is an inverse mass dimension of the coupling constant of a vertex $i,\left[c_{i}\right]=(\text { mass })^{-\kappa_{i}}$

$$
\mathcal{L}_{i}=c_{i}\left(N^{\dagger}(\ldots) N\right)^{\frac{n_{1}}{2}} \pi^{p_{i}}\left(\partial_{\mu}, M_{\pi}\right)^{d_{i}} \quad \longrightarrow \quad \kappa_{i}=d_{i}+\frac{3}{2} n_{i}+p_{i}-4
$$

Merging MUT with ChPT

Examples:

$$
\begin{aligned}
& 1 d \mid--\left\{\sim Q^{0}\right. \\
& \mathbf{v}=2 \text { [derivatives] } \\
& \quad-2 \text { [} \pi \text {-propagator] }
\end{aligned}
$$

$$
\begin{array}{lll}
\Delta_{i}=-2+\frac{1}{2} n_{i}+d_{i} & \Delta=-2+2+0=0 & \Delta=-2+1+1=0
\end{array} \quad \Delta=-2+1+1=0
$$

Chiral symmetry ensures that only non-renormalizable interactions with $\kappa>0$ (i.e. the irrelevant interactions) appear in $\mathcal{L}_{\text {eff }} \longrightarrow$ perturbative expansion for nuclear forces

Merging MUT with ChPT

\# of derivatives and/or M_{π}-insertions
terms with more pion fields
$\mathcal{L}_{\pi N}^{(1)}=N^{\dagger}[i \partial_{0}-\underbrace{\frac{g_{A}}{2 F} \boldsymbol{\tau} \vec{\sigma} \cdot \vec{\nabla} \boldsymbol{\pi}}_{\boldsymbol{\kappa}=1}-\underbrace{\frac{1}{4 F^{2}} \boldsymbol{\tau} \times \boldsymbol{\pi} \cdot \dot{\boldsymbol{\pi}}}_{\boldsymbol{\kappa}=2}+\underbrace{\frac{g_{A}}{4 F^{3}}\left((4 \alpha-1) \boldsymbol{\tau} \cdot \boldsymbol{\pi}(\boldsymbol{\pi} \vec{\sigma} \cdot \vec{\nabla} \boldsymbol{\pi})+2 \alpha \pi^{2}(\boldsymbol{\tau} \vec{\sigma} \cdot \vec{\nabla} \boldsymbol{\pi})\right.}_{\boldsymbol{\kappa}=3})+\ldots] N$
$\mathcal{L}_{\pi N}^{(2)}=N^{\dagger}[\underbrace{4 M^{2} c_{1}}_{\boldsymbol{\kappa}=1}-\underbrace{\frac{2 c_{1}}{F^{2}} M^{2} \pi^{2}+\frac{c_{2}}{F^{2}} \dot{\pi}^{2}+\frac{c_{3}}{F^{2}}\left(\partial_{\mu} \boldsymbol{\pi}\right) \cdot\left(\partial^{\mu} \boldsymbol{\pi}\right)-\frac{c_{4}}{4 F^{2}}(\boldsymbol{\tau} \vec{\sigma} \times \vec{\nabla} \boldsymbol{\pi}) \cdot \vec{\nabla} \boldsymbol{\pi}}_{\boldsymbol{\kappa}=3}+\ldots] N$
$\mathcal{L}_{N N}^{(0)}=\underbrace{\frac{1}{2} C_{S} N^{\dagger} N N^{\dagger} N+\frac{1}{2} C_{S} N^{\dagger} \vec{\sigma} N \cdot N^{\dagger} \vec{\sigma} N}_{\kappa=2}$

Expansion in the coupling constant \leftrightarrow expansion in the inverse mass dimension

$$
H_{I}=\sum_{\kappa=1}^{\infty} H^{(\kappa)} \quad \longrightarrow \quad \text { a more general ansatz: } A=\sum_{\alpha=1}^{\infty} A^{(\alpha)}
$$

Recursive solution of the decoupling equation:

$$
A^{(\alpha)}=-\frac{1}{E_{\lambda}} \lambda\left[H^{(\alpha)}+\sum_{i=1}^{\alpha-1} H^{(i)} A^{(\alpha-i)}-\sum_{i=1}^{\alpha-1} A^{(\alpha-i)} H^{(i)}-\sum_{i=1}^{\alpha-2} \sum_{j=1}^{\alpha-j-1} A^{(i)} H^{(j)} A^{(\alpha-i-j)}\right] \eta
$$

$$
\rightarrow \tilde{V}_{\mathrm{eff}}^{\mathrm{UT}}=\ldots
$$

NLO corrections to the nuclear force

4. Example: NLO corrections to the nuclear force

At LO ($\mathrm{V}=0$) one has: $V_{\mathrm{NN}}^{(0)}=-\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2} \frac{\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}}{q^{2}+M_{\pi}^{2}} \vec{\tau}_{1} \cdot \vec{\tau}_{2}+C_{S}+C_{T} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}$
The first corrections come at order $v=2$:
-1-loop corrections to the LO contacts

- 1-loop corrections to the OPEP [renormalization within the MUT is described in: EE, Glöckle, Meißner, NPA714 (2003) 535]
- Leading two-pion exchange potential

only renormalization \& M_{π}-dependence

- Contributions from 3N diagrams cancel completely at this order (no 3NF@NLO)

NLO corrections to the nuclear force

As an example, let us work out the TPEP $\propto g_{A}^{4}$ using the MUT. Extending the perturbative calculations to 4th order, one finds the relevant operators:

$$
\begin{aligned}
V^{(2)}=\eta[- & H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \\
& +\underbrace{\frac{1}{2} H_{I}^{(1)} \frac{\lambda}{E_{\pi}^{2}} H_{I}^{(1)} \eta H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)}+\frac{1}{2} H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \eta H_{I}^{(1)} \frac{\lambda}{E_{\pi}^{2}} H_{I}^{(1)}}_{\text {ensure the unitarity of the transformation (,wave-function orthonormalization") }}] \eta
\end{aligned}
$$

These Fock-space operators give rise to $1 \mathrm{~N}, 2 \mathrm{~N}$ and 3 N operators. Here, we focus only on the 2 N contributions from 2π-exchange.

In principle, we have to express $\boldsymbol{H}_{I}^{(1)}$ in terms of creation/destruction operators and evaluate matrix elements $\left\langle\overrightarrow{\boldsymbol{p}}_{1}{ }^{\prime} \overrightarrow{\boldsymbol{p}}_{2}{ }^{\prime}\right| \boldsymbol{V}^{(2)}\left|\overrightarrow{\boldsymbol{p}}_{1} \overrightarrow{\boldsymbol{p}}_{2}\right\rangle$. It is, however, more efficient to use the already introduced Feynman-like rule:

$$
\left\lvert\, \begin{aligned}
& \vec{q}, a \\
& -<-
\end{aligned} \longrightarrow \frac{i g_{A}}{2 F_{\pi}} \frac{1}{\sqrt{2 \omega_{q}}} \vec{\sigma} \cdot \vec{q} \tau^{a}\right.
$$

NLO corrections to the nuclear force

Consider time-ordered graphs of the planar-box type and assign the label „1" to the pion which is emitted by nucleon 1 first. Since all such diagrams have the same spin-isospin-momentum structure, we can (first) collect and simplify the energy denominators:

\qquad operators			人--6		$\left\{\begin{array}{l}-\phi \\ -6\end{array}\right.$	人-1
$-H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)}$	$-\frac{1}{\omega_{1} \omega_{12} \omega}$	$-\frac{1}{\omega_{1} \omega_{12} \omega_{2}}$	-	-	-	-
$\frac{1}{2} H_{I}^{(1)} \frac{\lambda}{E_{\pi}^{2}} H_{I}^{(1)} \eta H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)}$	-	-	$\frac{1}{2 \omega_{1} \omega_{2}^{2}}$	$\frac{1}{2 \omega_{1} \omega_{2}^{2}}$	$\frac{1}{2 \omega_{1} \omega_{2}^{2}}$	$\frac{1}{2 \omega_{1} \omega_{2}^{2}}$
$\frac{1}{2} H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \eta H_{I}^{(1)} \frac{\lambda}{E_{\pi}^{2}} H_{I}^{(1)}$	-	-	$\frac{1}{2 \omega_{1}^{2} \omega_{2}}$	$\frac{1}{2 \omega_{1}^{2} \omega_{2}}$	$\frac{1}{2 \omega_{1}^{2} \omega_{2}}$	$\frac{1}{2 \omega_{1}^{2} \omega_{2}}$

Here, $\omega_{12}:=\omega_{1}+\omega_{2}$. Collecting all denominators, we obtain: $2 \frac{\omega_{1}^{2}+\omega_{1} \omega_{2}+\omega_{2}^{2}}{\omega_{1}^{2} \omega_{2}^{2}\left(\omega_{1}+\omega_{2}\right)}$

NLO corrections to the nuclear force

Use the same bookkeeping for the crossed-box diagram and proceed in the same way to collect energy denominators.

Collecting all denominators, we obtain: $-2 \frac{\omega_{1}^{2}+\omega_{1} \omega_{2}+\omega_{2}^{2}}{\omega_{1}^{2} \omega_{2}^{2}\left(\omega_{1}+\omega_{2}\right)}$

NLO corrections to the nuclear force

Let's put everything together:

$$
\left\{\begin{array}{c}
\vec{l}_{2}, b \\
k^{2} \\
x^{\prime} \\
\vec{l}_{1}, \\
\vec{l}_{1}, a
\end{array}\right\}
$$

$$
\begin{aligned}
& (2 \pi)^{3} \int \frac{d^{3} l_{1}}{(2 \pi)^{3}} \frac{d^{3} l_{2}}{(2 \pi)^{3}} \delta^{3}\left(\vec{q}-\vec{l}_{1}-\vec{l}_{2}\right)(-2) \frac{\omega_{1}^{2}+\omega_{1} \omega_{2}+\omega_{2}^{2}}{\omega_{1}^{2} \omega_{2}^{2}\left(\omega_{1}+\omega_{2}\right)} \\
& \times\left(\frac{i g_{A}}{2 F_{\pi}}\right)^{4} \frac{1}{4 \omega_{1} \omega_{2}}\left(\vec{\sigma}_{1} \cdot \vec{l}_{1} \tau_{1}^{a}\right)\left(\vec{\sigma}_{1} \cdot \vec{l}_{2} \tau_{1}^{b}\right)\left(-\vec{\sigma}_{2} \cdot \vec{l}_{2} \tau_{2}^{b}\right)\left(-\vec{\sigma}_{2} \cdot \vec{l}_{1} \tau_{2}^{a}\right)
\end{aligned}
$$

where $\vec{q}:=\vec{p}_{1}{ }^{\prime}-\vec{p}_{1}$ is the momentum transfer.

NLO corrections to the nuclear force

Performing spin-isospin algebra, switching to new momenta $\vec{q}^{\prime}=\vec{l}_{1}+\vec{l}_{2}$ and $\vec{l}=\vec{l}_{1}-\vec{l}_{2}$ [don't forget the Jacobi-determinant...] and performing the trivial integration over \vec{q}^{\prime}, one obtains:
$V=-\left(\frac{g_{A}}{2 F_{\pi}}\right)^{4} \int \frac{d^{3} l}{(2 \pi)^{3}} \frac{\omega_{+}^{2}+\omega_{+} \omega_{-}+\omega_{-}^{2}}{\omega_{+}^{3} \omega_{-}^{3}\left(\omega_{+}+\omega_{-}\right)}\left[\frac{\vec{\tau}_{1} \cdot \vec{\tau}_{2}}{2}\left(l^{2}-q^{2}\right)^{2}+3 \vec{\sigma}_{1} \cdot \vec{q} \times \vec{l} \vec{\sigma}_{2} \cdot \vec{q} \times \vec{l}\right]$
where I have introduced $\omega_{ \pm}:=\sqrt{(\vec{q} \pm \vec{l})^{2}+4 M_{\pi}^{2}}$.

Tricks to evaluate the loop integral [for more tricks see e.g.: Rijken, Ann. Phys. 208 (1991) 253]

- Express the energy factor as a product of pion propagators. Use:

$$
\begin{aligned}
\frac{\omega_{+}^{2}+\omega_{+} \omega_{-}+\omega_{-}^{2}}{\omega_{+}^{3} \omega_{-}^{3}\left(\omega_{+}+\omega_{-}\right)} & =\frac{1}{4 M_{\pi}} \frac{\partial}{\partial M_{\pi}} \frac{1}{\omega_{+} \omega_{-}\left(\omega_{+}+\omega_{-}\right)} \\
\frac{1}{\omega_{+} \omega_{-}\left(\omega_{+}+\omega_{-}\right)} & =\frac{2}{\pi} \int_{0}^{\infty} \frac{d \lambda}{\left(\omega_{+}^{2}+\lambda^{2}\right)\left(\omega_{-}^{2}+\lambda^{2}\right)}
\end{aligned}
$$

- Combine the propagators by introducing the Feynman parameter and do DR

NLO corrections to the nuclear force

The final result is:

$$
\begin{aligned}
V=-\frac{g_{A}^{4}}{384 \pi^{2} F_{\pi}^{4}}[& \vec{\tau}_{1} \cdot \vec{\tau}_{2}\left(20 M_{\pi}^{2}+23 q^{2}+\frac{48 M_{\pi}^{4}}{4 M_{\pi}^{2}+q^{2}}\right) \\
& \left.+18\left(\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}-q^{2} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)\right] L(q) \underbrace{+\cdots}_{\begin{array}{r}
\text { contact terms with up to } 2 \text { momenta }
\end{array}}
\end{aligned}
$$

where the loop function is given by: $\quad L(q)=\frac{1}{q} \sqrt{4 M_{\pi}^{2}+q^{2}} \ln \frac{\sqrt{4 M_{\pi}^{2}+q^{2}}+q}{2 M_{\pi}}$

Notice:

- van der Waals-like forces in r-space. At large distances $\sim \exp \left(-2 M_{\pi} r\right)$. Highly singular at short distances, $\sim \boldsymbol{r}^{-\mathbf{3 - \nu}}$ ($\boldsymbol{\nu}$ is the chiral order).
- χ-expansion meaningful (convergent) for $\boldsymbol{r} \gtrsim M_{\pi}^{-1}$.

A note on renormalization

5. A note on renormalization

All UV divergences in the nuclear potentials up to $\mathrm{N}^{2} \mathrm{LO}$ are removed by the corresponding counterterms. This is not necessarily true starting from N3LO...

$$
\begin{aligned}
& V=\ldots=\int d^{3} l_{1} d^{\vec{B}_{2}} l_{2} \bar{\delta}\left(\vec{l}_{1}-\vec{l}_{2}-\overrightarrow{q_{1}}\right)[\cdots] \\
& \times\left[2 \frac{\omega_{1}^{2}+\omega_{2}^{2}}{\omega_{1}^{4} \omega_{2}^{4} \omega_{3}^{2}}+\frac{8}{\omega_{1}^{2} \omega_{2}^{2} \omega_{3}^{4}}-\frac{\omega_{1}+\omega_{2}}{\omega_{1}^{3} \omega_{2}^{3} \omega_{3}^{3}}-\frac{2}{\omega_{1}^{4} \omega_{2}^{2} \omega_{3}\left(\omega_{1}+\omega_{3}\right)}-\frac{2}{\omega_{1}^{2} \omega_{2}^{4} \omega_{3}\left(\omega_{2}+\omega_{3}\right)}\right] \\
& \sqrt[\overbrace{I_{1,2}+M}^{2}]{ }
\end{aligned}
$$

\rightarrow cannot renormalize the potential!

A note on renormalization

Solution [EE '06]

Nuclear potentials are not uniquely defined. Starting from N3LO, can construct additional UTs in Fock space beyond the (minimal) Okubo UT.

The UTs relevant for the N3LO contributions $\propto g_{A}^{6}$ are $U=e^{\alpha_{1} S_{1}+\alpha_{2} S_{2}}$ with the generators given by:

$$
\begin{aligned}
& S_{1}=\eta\left[H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \eta H_{I}^{(1)} \frac{\lambda}{E_{\pi}^{3}} H_{I}^{(1)}-\text { h.c. }\right] \eta \\
& S_{2}=\eta\left[H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \frac{\lambda}{E_{\pi}^{2}} H_{I}^{(1)}-\text { h.c. }\right] \eta
\end{aligned}
$$

They induce additional contributions in the Hamiltonian starting from N3LO
$\delta V^{(4)}=\left[\left(H_{\mathrm{kin}}+V^{(0)}\right), S\right]=-\alpha_{1} H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \eta H_{I}^{(1)} \frac{\lambda}{E_{\pi}} H_{I}^{(1)} \eta H_{I}^{(1)} \frac{\lambda}{E_{\pi}^{3}} H_{I}^{(1)}+\ldots$.
Demanding renormalizability constrains α_{1}, α_{2} and leads to unique static results.
So far, it was always possible to get finite nuclear potentials \& currents.

6. Electiroweak currents

- Switch on external sources s, p, r_{μ}, l_{μ} and consider local chiral rotations:

$$
\begin{aligned}
r_{\mu} & \rightarrow r_{\mu}^{\prime}=R r_{\mu} R^{\dagger}+i R \partial_{\mu} R^{\dagger}, & l_{\mu} & \rightarrow l_{\mu}^{\prime}=L l_{\mu} L^{\dagger}+i L \partial_{\mu} L^{\dagger} \\
s+i p & \rightarrow s^{\prime}+i p^{\prime}=R(s+i p) L^{\dagger}, & s-i p & \rightarrow s^{\prime}-i p^{\prime}=L(s-i p) R^{\dagger}
\end{aligned}
$$

The sources can be conveniently rewritten via $v_{\mu}=\frac{1}{2}\left(r_{\mu}+l_{\mu}\right), \quad a_{\mu}=\frac{1}{2}\left(r_{\mu}-l_{\mu}\right)$ with:

$$
v_{\mu}=v_{\mu}^{(s)}+\frac{1}{2} \boldsymbol{\tau} \cdot \boldsymbol{v}_{\mu}, \quad a_{\mu}=\frac{1}{2} \boldsymbol{\tau} \cdot \boldsymbol{a}_{\mu}, \quad s=s_{0}+\boldsymbol{\tau} \cdot \boldsymbol{s}, \quad p=p_{0}+\boldsymbol{\tau} \cdot \boldsymbol{p}
$$

的 already known from the strong sector...

- (Naive) attempt: calculate $\tilde{H} \rightarrow \tilde{H}[a, v, s, p]=U^{\dagger} H[a, v, s, p] U$ and extract the nuclear
currents via $V_{\mu}^{a}(\vec{x})=\frac{\delta \tilde{H}}{\delta v_{a}^{\mu}(\vec{x}, t)}, \quad A_{\mu}^{a}(\vec{x})=\frac{\delta \tilde{H}}{\delta a_{a}^{\mu}(\vec{x}, t)} \quad$ at $v=a=p=s=0, \quad s_{0}=m_{q}$.
However, the resulting currents turn out to be non-renormalizable...
\rightarrow Need to consider a more general class of UTs
Specifically, employ additional η-space UTs $U[a, v, s, p]$ subject to the constraint $U\left[0,0, m_{q}, 0\right]=1$ Notice: the resulting UTs are time-dependent, thus $H^{\prime} \neq U^{\dagger} H U$. Indeed:

$$
i \frac{\partial}{\partial t} \Psi=H \Psi \quad \longrightarrow \quad i \frac{\partial}{\partial t}\left(U^{\dagger}(t) \Psi\right)=\left[U^{\dagger}(t) H U(t)-U^{\dagger}(t)\left(i \frac{\partial}{\partial t} U(t)\right)\right]\left(U^{\dagger}(t) \Psi\right)
$$

- Continuity equations = manifestations of the χ symmetry Krebs, EE, Meißner, Annals Phys. 378 (17) 317

Summary of part II

- Nuclear forces and currents are not unique (off-shell behavior). It is crucial to maintain consistency.
- MUT can be combined with the chiral expansion and provides a convenient approach to derive nuclear forces and currents.
- Renormalizability of the nuclear potentials is not automatically guaranteed starting from N3LO but can be maintained by systematically exploiting the unitary ambiguity.

